【历年真题】:最新中考数学模拟专项测评 A卷(精选)
展开最新中考数学模拟专项测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
2、一组样本数据为1、2、3、3、6,下列说法错误的是( )
A.平均数是3 B.中位数是3 C.方差是3 D.众数是3
3、下列二次根式的运算正确的是( )
A. B.
C. D.
4、下列计算正确的是( )
A. B. C. D.
5、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
6、如图,,平分,于点,交于点,若,则的长为( )
A.3 B.4 C.5 D.6
7、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
8、若(mx+8)(2﹣3x)中不含x的一次项,则m的值为( )
A.0 B.3 C.12 D.16
9、到三角形三个顶点距离相等的点是( )
A.三边垂直平分线的交点 B.三条高所在直线的交点
C.三条角平分线的交点 D.三条中线的交点
10、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知x2﹣4x﹣1=0,则代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2=_____.
2、-3.6的绝对值是______.
3、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
4、若与互为相反数,则代数式的值是_________.
5、如图,已知D是等边边AB上的一点,现将折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如果,则的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A,B,C,D四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.
(1)甲同学选取A图片链接题目的概率是 ;
(2)求全班同学作答图片A和B所链接题目的概率.(请用列表法或画树状图法求解)
2、计算:.
3、(1)解方程:x²-2x-8=0;
(2)计算:5sin60°-cos245°.
4、 “119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):
八年级代表队:80,90,90,100,80,90,100,90,100,80;
九年级代表队:90,80,90,90,100,70,100,90,90,100.
(1)填表:
代表队 | 平均数 | 中位数 | 方差 |
八年级代表队 | 90 |
| 60 |
九年级代表队 |
| 90 |
|
(2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;
(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?
5、如图,C,D是以AB为直径的半圆周的三等分点,CD=8cm.
(1)求∠ACD的度数;
(2)求阴影部分的面积.
-参考答案-
一、单选题
1、A
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
2、C
【分析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
A、平均数为,故此选项不符合题意;
B、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;
C、方差为,故此选项符合题意;
D、众数为3,故此选项不符合题意.
故选:C.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
3、B
【分析】
根据二次根式的性质及运算逐项进行判断即可.
【详解】
A、,故运算错误;
B、,故运算正确;
C、,故运算错误;
D、,故运算错误.
故选:B
【点睛】
本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.
4、D
【分析】
先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.
【详解】
A. ,故A选项错误;
B. ,不是同类项,不能合并,故错误;
C. ,故C选项错误;
D. ,故D选项正确.
故选:D.
【点睛】
本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.
5、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
6、D
【分析】
过作于,由题意可知,由角角边可证得,故,由直角三角形中30°的角所对的边是斜边的一半可知,再由等角对等边即可知.
【详解】
解:过作于,
,交于点,平分
,
,
,OP=OP
,
,
又,
,
故选:D.
【点睛】
本题考查了角平分线的性质,平行线的性质,全等三角形的判定及性质以及在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.两直线平行,内错角相等.
7、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
8、C
【分析】
先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.
【详解】
解:(mx+8)(2﹣3x)
(mx+8)(2﹣3x)中不含x的一次项,
解得:
故选C
【点睛】
本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.
9、A
【分析】
根据线段垂直平分线上的点到两端点的距离相等解答.
【详解】
解:∵线段垂直平分线上的点到两端点的距离相等,
∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选:A.
【点睛】
本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
10、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
二、填空题
1、12
【分析】
化简代数式,将代数式表示成含有的形式,代值求解即可.
【详解】
解:
将代入得代数式的值为12
故答案为:12.
【点睛】
本题考查了完全平方公式、平方差公式以及代数式求值.解题的关键在于正确的化简代数式.
2、3.6
【分析】
根据绝对值的性质解答.
【详解】
解:-3.6的绝对值是3.6,
故答案为:3.6.
【点睛】
此题考查了求一个数的绝对值,正确掌握绝对值的性质是解题的关键.
3、或
【分析】
分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
【详解】
如图:当将纸片沿纵向对折
根据题意可得:
为的三等分点
在中有
如图:当将纸片沿横向对折
根据题意得:,
在中有
为的三等分点
故答案为:或
【点睛】
本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
4、2
【分析】
利用互为相反数的两个数的和为0,计算a的值,代入求值即可.
【详解】
∵与互为相反数,
∴3a-7+2a+2=0,
解得a=1,
∴
=1-2+3
=2,
∴代数式的值是2,
故答案为:2.
【点睛】
本题考查了相反数的性质,代数式的值,利用互为相反数的两个数的和为零确定字母的值是解题的关键.
5、7:8
【分析】
设AD=2x,DB=3x,连接DE、DF,由折叠的性质及等边三角形的性质可得△ADE∽△BFD,由相似三角形的性质即可求得CE:CF的值.
【详解】
设AD=2x,DB=3x,则AB=5x
连接DE、DF,如图所示
∵△ABC是等边三角形
∴BC=AC=AB=5x,∠A=∠B=∠ACB=60°
由折叠的性质得:DE=CE,DF=CF,∠EDF=∠ACB=60°
∴∠ADE+∠BDF=180°−∠EDF=120°
∵∠BDF+∠DFB=180°−∠B=120°
∴∠ADE=∠DFB
∴△ADE∽△BFD
∴
即CE:CF=7:8
故答案为:7:8
【点睛】
本题考查了等边三角形的性质,折叠的性质,相似三角形的判定与性质等知识,证明三角形相似是本题的关键.
三、解答题
1、
(1)
(2)图表见解析,
【分析】
(1)根据题意可得一共有4种等可能结果,甲同学选取A图片链接题目有1种结果,再根据概率公式,即可求解;
(2)根据题意,列出表格,可得到共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种,再根据概率公式,即可求解.
(1)
解:根据题意得:甲同学选取A图片链接题目的概率是;
(2)
解:根据题意,列表如下:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种:(A,B),(B,A),
∴P(全班同学作答图片A和B所链接的题目).
【点睛】
本题主要考查了用列表法或画树状图法求概率,根据题意,画出表格是解题的关键.
2、
【分析】
由实数的运算法则计算即可.
【详解】
解:原式
.
【点睛】
本题考查了实数的混合运算,实数包括有理数和无理数,所以实数的混合运算包含了绝对值,幂的运算,开平方开立方等全部计算形式,仍满足先乘除后加减,有括号先算括号内的运算顺序.
3、(1);(2)
【分析】
(1)利用因式分解法求解;
(2)代入特殊角的三角函数值计算即可.
【详解】
解:(1)x²-2x-8=0
∴;
(2)原式=
=.
【点睛】
此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键.
4、
(1)90,90,80
(2)八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)180名
【分析】
(1)根据中位数的定义,平均数,方差的公式进行计算即可;
(2)根据平均数相等时,方差的意义进行分析即可;
(3)600乘以满分的人数所占的比例即可.
(1)
解:∵八年级代表队:80,80,80,90,90,90,90,100,100,100;
∴八年级代表队中位数为90
九年级代表队的平均数为90,
九年级代表队的方差为80
故答案为:
(2)
八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)
(名).
答:九年级大约有180名学生可以获得奖状
【点睛】
本题考查了求中位数,平均数,方差,样本估计总体,根据方差作决策,掌握以上知识是解题的关键.
5、
(1)
(2)
【分析】
(1)连接、,根据,是以为直径的半圆周的三等分点,证明出、是等边三角形,即可求解;
(2)根据(1)得、是等边三角形,证明出,可以将问题转化为,即可求解.
(1)
解:解:连接、,
,是以为直径的半圆周的三等分点,
,,
又,
、是等边三角形,
;
(2)
解:根据(1)得、是等边三角形,
在和中,,
,
.
【点睛】
本题考查了扇形面积的计算,全等三角形的判定及性质、圆心角定理,解题的关键是将阴影部分的面积转化为扇形的面积,难度一般.
【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选),共26页。
【历年真题】最新中考数学模拟测评 卷(Ⅰ)(含答案解析): 这是一份【历年真题】最新中考数学模拟测评 卷(Ⅰ)(含答案解析),共22页。试卷主要包含了观察下列图形,点P等内容,欢迎下载使用。
【历年真题】最新中考数学模拟测评 卷(Ⅰ)(精选): 这是一份【历年真题】最新中考数学模拟测评 卷(Ⅰ)(精选),共23页。试卷主要包含了如图,是的外接圆,,则的度数是等内容,欢迎下载使用。