【历年真题】2022年北京市中考数学模拟测评 卷(Ⅰ)(含答案解析)
展开
这是一份【历年真题】2022年北京市中考数学模拟测评 卷(Ⅰ)(含答案解析),共21页。试卷主要包含了下列说法中,正确的有,在平面直角坐标系xOy中,点A,多项式去括号,得,下列方程是一元二次方程的是等内容,欢迎下载使用。
2022年北京市中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、要使式子有意义,则( )A. B. C. D.2、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )A. B.2 C.3 D.43、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>1254、下列说法中,正确的有( )①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.A.0个 B.1个 C.2个 D.3个5、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)6、多项式去括号,得( )A. B. C. D.7、如图,DE是的中位线,若,则BC的长为( )A.8 B.7 C.6 D.7.58、下列方程是一元二次方程的是( )A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=39、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).A. B.0 C. D.10、下列图形是中心对称图形的是( ).A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的最大整数解是_______.2、某班学生分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了两组,这个班共有多少名学生?若设共有x名学生,可列方程为________.3、如果有理数满足,在数轴上点所表示的数是,点所表示的数是;那么在数轴上_______(填点和点中哪个点在哪个点)的右边.4、计算:_________,_________,_________.分解因式:_________,_________,________.5、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________三、解答题(5小题,每小题10分,共计50分)1、如图,数轴上A、B、C三点所对应的数分别是a、b、c.且a、b、c满足|a+24|+(b+10)2+(c-10)2=0.(1)则a=_____,b=_____,c=_____.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动.经过t秒后,点P到点A、B、C的距离和是多少(用含t的代数式表示)?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P,Q,T所对应的数分别是xP,xQ,xT,点Q出发的时间为t,当<t<时,求的值.2、先化简,再求值:a2b-[3ab2-2(-3a2b+ab2)],其中a=1,b=-.3、如图,已知二次函数y=ax2+bx+1的图象经过点A(﹣1,6)与B(4,1)两点.(1)求这个二次函数的表达式;(2)在图中画出该二次函数的图象;(3)结合图象,写出该函数的开口方向、对称轴和顶点坐标.4、计算:5、如图,抛物线y=x2+bx+c(a≠0)与x轴交于4B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线的对称轴为直线x=﹣1,点D为抛物线的顶点,连接AD,AC.(1)求抛物线的解析式;(2)如图1,点P是抛物线上第三象限内的一个动点,过点P作PM∥x轴交AC于点M,求PM的最大值及此时点P的坐标;(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线AC上一动点,直接写出使得由点C,B,M,Q组成的四边形是平行四边形的点Q的坐标;并把求其中一个点Q的坐标的过程写出来. -参考答案-一、单选题1、B【分析】根据分式有意义的条件,分母不为0,即可求得答案.【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.2、B【分析】由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点落在点处,,,又∵,∴,∴,,又为的中点,AE=AE'∴,,即,.故选:B.【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.3、D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x-5(20-x)>125,故选:D.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.4、B【分析】①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.②不明确A、B、C是否在同一条直线上.所以错误.③不知道C是否在线段AB上,错误.④两点之间线段最短,正确.【详解】①射线AB和射线BA的端点不同不是同一条射线.所以错误.②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.④两点之间线段最短,所以正确.故选:B.【点睛】本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.5、C【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.6、D【分析】利用去括号法则变形即可得到结果.【详解】解:−2(x−2)=-2x+4,故选:D.【点睛】本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.7、A【分析】已知DE是的中位线,,根据中位线定理即可求得BC的长.【详解】是的中位线,,,故选:A.【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.8、D【分析】根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【详解】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.是分式方程,故本选项不符合题意;C.不是方程,故本选项不符合题意;D.是一元二次方程,故本选项符合题意;故选:D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.9、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:,∴,,,,∴,故选:C.【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.10、A【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.【详解】解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:A.【点睛】本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.二、填空题1、2【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.2、【分析】设这个班学生共有人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了组,根据此列方程即可.【详解】解:设这个班学生共有人,根据题意得: 故答案为:.【点睛】此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组.3、点在点【分析】利用a61<0可知a<0,于是可得a622>0,a2021<0,根据原点左边的数为负数,原点右边的数为正数可得结论.【详解】解:,.,,点在点的右边.故答案为:点在点.【点睛】本题主要考查了有理数的乘方,数轴.利用负数的偶次方是正数,负数的奇数次方是负数的法则是解题的关键.4、 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,,.分解因式:,,.故答案为:;;;;;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.5、24【分析】分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.【详解】当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.故答案为:24【点睛】本题考查了等腰三角形的性质及周长,要注意分类讨论.三、解答题1、(1);(2)设经过t秒后,点P到点A、B、C的距离和为,则;(3)0【分析】(1)利用绝对值的非负性及完全平方的非负性求解;(2)需要进行分类讨论,分别为当点在线段上时,当点在线段上时,当点在线段的延长线上时,进行分类讨论;(3)先分别求出当点追上的时间,当点追上的时间,当点追上的时间,根据当时,得出三点表示的数的大小关系,即可化简求值.【详解】解(1),,,故答案是:;(2)设经过t秒后,点P到点A、B、C的距离和为,①当点在线段上时,则,点P到点A、B、C的距离和是:;②当点在线段上时,则,点P到点A、B、C的距离和是:;③当点在线段的延长线上时,则点P到点A、B、C的距离和是:;;(3)当点追上的时间,当点追上的时间,当点追上的时间,当时,位置如图:,.【点睛】本题考查了绝对值、数轴上的动点问题、列代数式,解题的关键是利用数形结合思想及分论讨论思想求解.2、,【分析】先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.【详解】解: ,当,时,原式.【点睛】本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.3、(1)(2)见解析(3)开口向上,对称轴为,顶点坐标为【分析】(1)根据待定系数法求二次函数解析式即可;(2)根据顶点,对称性描出点,进而画出该二次函数的图形即可;(3)根据函数图像直接写出开口方向、对称轴和顶点坐标.(1)将点A(﹣1,6)与B(4,1)代入y=ax2+bx+1即解得(2)由,确定顶点坐标以及对称轴,根据对称性求得描出点关于的对称点,作图如下,(3)根据图象可知,的图象开口向上,对称轴为,顶点坐标为【点睛】本题考查了待定系数法求解析式,画二次函数图象,的图象与性质,求得解析式是解题的关键.4、【分析】原式各项化为最简二次根式,去括号合并即可得到结果.【详解】解:原式.【点睛】此题考查了二次根式的加减法,涉及的知识有:二次根式的化简,去括号法则,以及合并同类二次根式法则,熟练掌握法则是解本题的关键.5、(1)(2)最大值为2,(3),或,【分析】(1)用待定系数法即可得抛物线的解析式为;(2)由,得直线解析式为,设,,可得,即得时,的值最大,最大值为2,;(3)由已知得平移后的抛物线解析式为,设,,而,,①以、为对角线,则的中点即是的中点,即,解得,或,;②以、为对角线,得,方程组无解;③以、为对角线,,解得,或,.(1)解:点的坐标为在抛物线,抛物线的对称轴为直线,,解得,抛物线的解析式为;(2)在中,令得或,,在中,令得,,设直线解析式为,则,解得,直线解析式为,设,,由得,,,,,时,的值最大,最大值为2;此时;(3)将原抛物线向右平移,使得点刚好落在原点,平移后的抛物线解析式为,设,,而,,①以、为对角线,则的中点即是的中点,,解得,,或,;②以、为对角线,,方程组无解; ③以、为对角线,,解得,,或,;综上所述,,或,.【点睛】本题考查二次函数综合应用,涉及待定系数法、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度
相关试卷
这是一份【历年真题】最新中考数学模拟测评 卷(Ⅰ)(含答案解析),共22页。试卷主要包含了观察下列图形,点P等内容,欢迎下载使用。
这是一份【历年真题】2022年中考数学模拟真题测评 A卷(含答案及解析),共23页。试卷主要包含了抛物线的顶点坐标是,二次函数y=,下列说法正确的是等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市海淀区中考数学模拟真题测评 A卷(含详解),共18页。试卷主要包含了已知和是同类项,那么的值是,下列计算错误的是,下列命题中,是真命题的是,下列命题正确的是等内容,欢迎下载使用。