北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后测评
展开
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后测评,共18页。试卷主要包含了对不等式进行变形,结果正确的是,已知a>b,则下列选项不正确是,已知x=1是不等式等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知不等式组2<x﹣1<4的解都是关于x的一次不等式3x≤2a﹣1的解,则a的取值范围是( )A.a≤5 B.a<5 C.a≥8 D.a>82、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A.24人 B.23人 C.22人 D.不能确定3、如图,数轴上表示的解集是( )A.﹣3<x≤2 B.﹣3≤x<2 C.x>﹣3 D.x≤24、对不等式进行变形,结果正确的是( )A. B. C. D.5、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )A. B.C. D.6、把不等式的解集在数轴上表示正确的是( )A. B.C. D.7、已知a>b,则下列选项不正确是( )A.a+c>b+c B.a﹣b>0 C. D.a•c2≥b•c28、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<09、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤110、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、按下面的程序计算,若开始输入的值为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当时,输出结果____.若经过2次运算就停止,则可以取的所有值是____.2、 “x的2倍与6的和是负数”用不等式表示为_____.3、已知关于x的不等式组只有两个整数解,则实数m的取值范围是 __________.4、如图,关于x的不等式组在数轴上所表示的的解集是:______.5、根据“3x与5的和是负数”可列出不等式 _________.三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围“有如下解法,解:∵x﹣y=2,又∵x>1,∴y+2>1,即y>﹣1.又y<0,∴﹣1<y<0…①同理,得:1<x<2…②由①+②,得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:已知关于x、y的方程组的解都为非负数.(1)求a的取值范围.(2)已知2a﹣b=﹣1,求a+b的取值范围.(3)已知a﹣b=m,若,且b≤1,求a+b的取值范围(用含m的代数式表示).2、用不等式表示:(1)x与-3的和是负数;(2)x与5的和的28%不大于-6;(3)m除以4的商加上3至多为5.3、解不等式组:.4、解下列不等式 (组):(1) 4x-1⩾2x+4(2) 5、学校计划开展暑期实践活动,由一个带队老师和若干同学,共x人参加.有甲乙两个旅行社可供选择.两个旅行社的原价均为100元/人,现都推出优惠措施:甲旅行社:参团人员每人打七五折(原价的75%).乙旅行社:带队老师免费,学生每人打八折(原价的80%).(1)请你用含有x的代数式分别表示甲乙两个旅行社的总费用:甲: 元;乙: 元.(2)当学生人数为20人时,请你分别计算甲乙两个旅行社的总费用;(3)你认为学校选用哪个旅行社花费更少?请直接写出答案. ---------参考答案-----------一、单选题1、C【解析】【分析】先求出不等式组2<x﹣1<4的解集,再求出一次不等式3x≤2a﹣1的解集,根据一次不等式解集的分界点在5以及其右边,列不等式求解即可.【详解】解:∵2<x﹣1<4,∴3<x<5,∵一次不等式3x≤2a﹣1,解得,∵满足3<x<5都在范围内,∴,解得.故选择C.【点睛】本题考查不等式组的解集与一次不等式的解集关系,利用解集的分界点在5以及5的右边部分得出不等式是解题关键.2、C【解析】【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.【详解】解:设每组预定的学生数为x人,由题意得,解得是正整数故选:C.【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、A【解析】【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.4、D【解析】【分析】根据不等式的基本性质进行逐一判断即可得解.【详解】A.不等式两边同时减b得,故选项A错误;B.不等式两边同时减2得,故选项B错误;C.不等式两边同时乘2得,故选项C错误;D.不等式两边同时乘得,不等式两边再同时加1得,故选项D准确.故选:D.【点睛】本题主要考查了不等式的基本性质,注意不等式两边都加上或减去一个数或整式,不等号方向不变,不等式两边同时乘或除以一个正数,不等号的方向不变,不等式两边同时乘或除以一个负数,要改变不等号的方向.5、A【解析】【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.6、D【解析】【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式的解集为,在数轴上的表示如下:故选:D.【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.7、C【解析】【分析】由题意直接根据不等式的性质对各个选项进行分析判断即可.【详解】解:A.∵a>b,∴a+c>b+c,故本选项不符合题意;B.∵a>b,∴a﹣b>b﹣b,∴a﹣b>0,故本选项不符合题意;C.∵a>b,∴,故本选项符合题意;D.∵a>b,c2≥0,∴a•c2≥b•c2,故本选项不符合题意;故选:C.【点睛】本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向.8、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.9、A【解析】【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围.【详解】解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,∴ 且 ,即﹣4(﹣2a+2)≤0且﹣(a+2)>0,解得:a<﹣2.故选:A.【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.10、C【解析】【分析】先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论.【详解】解:,解不等式得,解不等式得,,因为不等式组有解,故解集为:,因为不等式组有不超过3个整数解,所以,,把代入,,解得,故选:C.【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.二、填空题1、 11, 2或3或4.【解析】【分析】根据题意将代入求解即可;根据题意列出一元一次不等式组即可求解.【详解】解:当时,第1次运算结果为,第2次运算结果为,当时,输出结果,若运算进行了2次才停止,则有,解得:.可以取的所有值是2或3或4,故答案为:11,2或3或4.【点睛】此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.2、【解析】【分析】根据题意列出不等式即可.【详解】解:“x的2倍与6的和是负数”用不等式表示为,故答案为:.【点睛】本题考查了列不等式,读懂题意是解本题的关键.3、【解析】【分析】分和两种情况,列出不等式组,根据不等式组有两个整数解求解可得.【详解】解:当时,,,;当时,,,不等式的解为,不等式组只有两个整数解,两个整数解为和,,故答案为:.【点睛】本题主要考查一元一次不等式组的整数解,解题的关键是根据绝对值性质分类讨论及由不等式组的整数解得出的值.4、【解析】【分析】根据图像特点向左是小于,向右是大于,即可得答案.【详解】∵从-2出发向右画出的折线中表示-2的点是空心,∴x>-2,∵从1出发向左画出的折线中表示1的点是实心,∴x≤1,∴不等式的解集是:−2<x≤1故答案为:−2<x≤1.【点睛】本题考查了一元一次不等式的解法,做题的关键是掌握空心和实心的区别.5、【解析】【分析】3x与5的和为,和是负数即和小于0,列出不等式即可得出答案.【详解】3x与5的和是负数表示为.故答案为:.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.三、解答题1、(1);(2)≤a+b≤7;(3)3﹣m≤a+b≤4﹣m【解析】【分析】(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a、b的取值范围,然后再来求a+b的取值范围;(3)根据(1)的解题过程求得a、b取值范围,结合限制性条件得出结论即可.【详解】解:(1)解方程组得,∵方程组的解都为非负数,∴,解得;(2)∵2a﹣b=﹣1,∴a=,∴,解得4≤b≤5,∴≤a+b≤7;(3)∵a﹣b=m,≤a≤2,∴≤m+b≤2,即﹣m≤b≤2﹣m,∴3﹣m≤a+b≤4﹣m.【点睛】本题主要考查了二元一次方程组的求解,不等式的性质应用,准确分析计算是解题的关键.2、(1)x-3<0;(2)28%(x+5)≤-6;(3)≤5.【解析】【分析】(1)根据负数是小于0的数列不等式即可;(2)不大于即小于或等于,根据不大于的含义列不等式即可;(3)至多即小于或等于,根据至多的含义列不等式即可.【详解】解:(1)x-3<0;(2)28%(x+5)≤-6;(3)≤5.【点睛】本题考查的列不等式,列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式.在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x是非负数,则x≥0;若x是非正数,则x≤0;若x大于y,则有x-y>0;若x小于y,则有x-y<0等.3、【解析】【分析】分别解两个不等式,取公共解即可.【详解】解:解等式①得,解不等式②得,故,【点睛】本题考查解不等式组.掌握利用“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是解题关键.4、(1)x≥2.5;(2)-3≤x≤1【解析】【分析】(1)通过移项,合并同类项,未知数系数化为1,即可求解;(2)分别算出各个不等式的解,再取它们的公共部分,即可.【详解】解:(1) 4x-1≥2x+4,移项得:4x-2x≥4+1,合并同类项得:2x ≥5,解得:x≥2.5;(2) ,由①得:x≤1,由②得:x≥-3,∴不等式组的解为:-3≤x≤1.【点睛】本题主要考查解一元一次不等式(组),熟练掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.5、(1) ; ;(2)甲旅行社的总费用1575元,乙旅行社的总费用1600元;(3)当 时,两家旅行社的费用一样;当 时,乙旅行社的花费更少;当 时,甲旅行社的花费更少【解析】【分析】(1)根据题意分别列出代数式,表示出两家旅行社的总费用,即可求解;(2)当学生人数为20人时,分别计算甲乙两个旅行社的总费用,即可求解;(3)分三种情况讨论,即可求解.【详解】解:(1)甲旅行社的总费用: 元,乙旅行社的总费用: 元;(2)当学生人数为20人时,甲旅行社的总费用:元,乙旅行社的总费用: 元;(3)当 ,即 时,两家旅行社的费用一样;当 ,即 时,乙旅行社的花费更少;当 ,即 时,甲旅行社的花费更少.【点睛】本题主要考查了列代数式,一元一次方程和一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共19页。试卷主要包含了为了解学生参加体育锻炼的情况等内容,欢迎下载使用。
这是一份初中第六章 整式的运算综合与测试课时练习,共20页。试卷主要包含了已知下列一组数,下列说法不正确的是,把式子去括号后正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试同步训练题,共16页。试卷主要包含了下列因式分解中,正确的是,下列变形,属因式分解的是等内容,欢迎下载使用。