北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题
展开
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题,共19页。试卷主要包含了若a<b,则下列式子正确的是,不等式组的解集是,若成立,则下列不等式成立的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )A. B. C. D.2、如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为( )A.3 B.4 C.5 D.63、不等式的解集在数轴上表示正确的是 ( )A. B.C. D.4、若a<b,则下列式子正确的是( )A.> B.﹣3a<﹣3b C.3a>3b D.a﹣3<b﹣35、不等式组的解集是( )A. B. C. D.无解6、若成立,则下列不等式成立的是( )A. B.C. D.7、把不等式组的解集在数轴上表示,正确的是( )A. B.C. D.8、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )A. B.C. D.9、已知关于x的不等式组恰有4个整数解,则a的取值范围是( )A.﹣1<a<﹣ B.﹣1≤a≤﹣ C.﹣1<a≤﹣ D.﹣1≤a<﹣10、下列不等式一定成立的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知那么|x-3|+|x-1|=_____.2、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________.3、已知关于x的不等式组只有两个整数解,则实数m的取值范围是 __________.4、 “m的2倍与5的和是正数”可以用不等式表示为 ___.5、不等式组的解集是______.三、解答题(5小题,每小题10分,共计50分)1、解不等式,并把解集在数轴上表示出来.(1)7x﹣2≤9x+2;(2).2、用等号或不等号填空:(1)比较2x与x2+1的大小:当x=2时,2x x2+1当x=1时,2x x2+1当x=﹣1时,2x x2+1(2)任选取几个x的值,计算并比较2x与x2+1的大小;3、(1)解不等式4x﹣1>3x;(2)解不等式组.4、解下列不等式 (组):(1) 4x-1⩾2x+4(2) 5、我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:(1)[-4.5]= ;<3.5>= ;(2)若[x]=2,求x的取值范围;若<y>=-1,求y的取值范围. ---------参考答案-----------一、单选题1、C【解析】【分析】先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论.【详解】解:,解不等式得,解不等式得,,因为不等式组有解,故解集为:,因为不等式组有不超过3个整数解,所以,,把代入,,解得,故选:C.【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.2、C【解析】【分析】先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案.【详解】解:,解不等式①,得:,解不等式②,得:,∴不等式组的解集为,∵关于y的不等式组有解,∴,解得:,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.3、B【解析】【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:,移项得: 解得: 所以原不等式得解集:.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.4、D【解析】【分析】根据不等式的基本性质判断即可.【详解】解:A选项,∵a<b,∴,故该选项不符合题意;B选项,∵a<b,∴﹣3a>﹣3b,故该选项不符合题意;C选项,∵a<b,∴3a<3b,故该选项不符合题意;D选项,∵a<b,∴a﹣3<b﹣3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.5、C【解析】【分析】分别解出两个不等式,即可求出不等式组的解集.【详解】解:解不等式①得 x>1,解不等式②得 x<3,∴不等式组的解集为1<x<3.故选:C【点睛】本题考查了解一元一次不等式组,正确解出两个不等式,并正确确定两个不等式的公共解是解题关键,求不等式组的解集可以借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”确定,也可以根据数轴确定.6、C【解析】【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;故选:C.【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.7、D【解析】【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:,解不等式②,得: ,所以不等式组的解集为 把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.8、A【解析】【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.9、D【解析】【分析】先分别求得每个一元一次不等式的解集,再根据题意得出2a的取值范围即可解答.【详解】解:解不等式组得:,∵该不等式组恰有4个整数解,∴-2≤2a<-1,解得:﹣1≤a<﹣,故选:D.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,得出2a的取值范围是解答的关键.10、B【解析】【分析】根据不等式的性质依次判断即可.【详解】解:A.当y≤0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x≤0时不成立,故该选项不符合题意;D. 当m≤0时不成立,故该选项不符合题意;故选:B.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.二、填空题1、2【解析】【分析】先求出不等式组的解集,再根据x的取值化简绝对值即可求解.【详解】解:解不等式①得, 解不等式②得, ∴不等式组的解集为: ,∴x-3<0,x-1>0, ∴.故答案为:2【点睛】本题考查了求不等式组的解集和绝对值的化简,正确求出不等式组的解集,正确化简绝对值是解题关键.2、5只和23颗或6只和26颗.【解析】【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可.【详解】解:设猴子的只数为x只,根据题意列出不等式组得,,解得,,因为x为整数是,所以,或,花生的颗数为颗或颗故答案为:5只和23颗或6只和26颗.【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.3、【解析】【分析】分和两种情况,列出不等式组,根据不等式组有两个整数解求解可得.【详解】解:当时,,,;当时,,,不等式的解为,不等式组只有两个整数解,两个整数解为和,,故答案为:.【点睛】本题主要考查一元一次不等式组的整数解,解题的关键是根据绝对值性质分类讨论及由不等式组的整数解得出的值.4、2m+5>0【解析】【分析】直接根据正数大于0列出不等式即可.【详解】解:由题意知:2m+5>0,故答案为:2m+5>0.【点睛】本题考查一元一次不等式的应用,理解题意,正确列出不等式是解答的关键.5、【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:,由①可得:,由②可得:,∴原不等式组的解集为;故答案为.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.三、解答题1、(1)x≥-2,在数轴上表示见解析;(2)x<1,在数轴上表示见解析【解析】【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)7x-2≤9x+2,移项,得:7x-9x≤2+2,合并同类项,得:-2x≤4,系数化为1,得:x≥-2.将不等式的解集表示在数轴上如下:;(2),去分母,得:8-(7x-1)>2(3x-2),去括号,得:8-7x+1>6x-4,移项,得:-7x-6x>-4-8-1,合并同类项,得:-13x>-13,系数化为1,得:x<1.将不等式的解集表示在数轴上如下:.【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2、(1)<,=,<;(2)当x=3时,2x<x2+1,当x=﹣2时,2x<x2+1【解析】【分析】(1)将x的值代入不等号两边的代数式中,比较大小即可得;(2)任选两个值,按照(1)中方法代入求值,然后比较大小即可得.【详解】解:(1)比较2x与的大小:当时,,,∴;当时,,,∴;当时,,,∴;故答案为:,,;(2)当时,,,∴;当时,,,∴.【点睛】题目主要考查不等式的性质,熟练掌握不等式的性质是解题关键.3、(1);(2).【解析】【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)4x﹣1>3x;解得;(2)解不等式①得:,解不等式②得:不等式组的解集为【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.4、(1)x≥2.5;(2)-3≤x≤1【解析】【分析】(1)通过移项,合并同类项,未知数系数化为1,即可求解;(2)分别算出各个不等式的解,再取它们的公共部分,即可.【详解】解:(1) 4x-1≥2x+4,移项得:4x-2x≥4+1,合并同类项得:2x ≥5,解得:x≥2.5;(2) ,由①得:x≤1,由②得:x≥-3,∴不等式组的解为:-3≤x≤1.【点睛】本题主要考查解一元一次不等式(组),熟练掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.5、(1)-5,4;(2)2≤x<3;-2≤y<-1【解析】【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[−2.5]=−3,可得[x]=2中的x的取值,根据<a>表示大于a的最小整数,可得<y>=-1,y的取值.【详解】解:(1)由题意得:[-4.5]=−5,<3.5>=4,故答案为:−5,4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=-1,∴y的取值范围是-2≤y<-1.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共22页。试卷主要包含了下列说法正确的个数是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份初中数学第七章 观察、猜想与证明综合与测试课后练习题,共26页。试卷主要包含了命题,下列命题中是真命题的是,下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份2021学年第六章 整式的运算综合与测试精练,共19页。试卷主要包含了已知,下列计算正确的是,有理数a,多项式+1的次数是等内容,欢迎下载使用。