初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试单元测试课堂检测
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试单元测试课堂检测,共18页。试卷主要包含了对于不等式4x+7,关于x的方程3﹣2x=3等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不等式2x﹣1<3的解集在数轴上表示为( )
A. B.
C. D.
2、若x+2022>y+2022,则( )
A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y
3、在数轴上表示不等式组﹣1<x≤3,正确的是( )
A. B.
C. D.
4、不等式的解集在数轴上表示正确的是 ( )
A. B.
C. D.
5、已知关于的不等式组的整数解共有个,则的取值范围是( )
A. B. C. D.
6、把不等式的解集在数轴上表示正确的是( )
A. B.
C. D.
7、对于不等式4x+7(x-2)>8不是它的解的是( )
A.5 B.4 C.3 D.2
8、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )
A.5 B.4 C.3 D.2
9、若a+b+c=0,且|a|>|b|>|c|,则下列结论一定正确的是( )
A.abc>0 B.abc<0 C.ac>ab D.ac<ab
10、下列判断不正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于x的一元一次不等式的解集为,那么关于y的一元一次不等式的解集为___________.
2、若不等式组的解集为,则的取值范围为__________.
3、去年绵阳市空气质量良好(二级以上)的天数与全年天数(365)之比达到80%,如果明年(365天)这样的比值要超过90%,那么明年空气质量良好的天数比去年至少要增加_____天.
4、不等式组的解集为____________.
5、不等式的解集是______.
三、解答题(5小题,每小题10分,共计50分)
1、解下列不等式(组)
(1)5x>3(x﹣2)+2.
(2).
2、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.
(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板________________张,正方形纸板_____________张(请用含有x的式子)
(2)在(1)的条件下,有哪几种生产方案?
(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a的值.
3、解不等式:
(1)2(x﹣1)﹣3(3x+2)>x+5.
(2).
4、解不等式组,并写出所有整数解.(不画数轴)
5、解不等式组,并写出所有整数解.
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.
【详解】
解:由2x﹣1<3得:x<2,
则不等式2x﹣1<3的解集在数轴上表示为
,
故选:D.
【点睛】
本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.
2、C
【解析】
【分析】
直接根据不等式的性质可直接进行排除选项
【详解】
解:∵x+2022>y+2022,
∴x>y,
∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.
故答案为:C.
【点睛】
本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.
3、C
【解析】
【分析】
把不等式组的解集在数轴上表示出来即可.
【详解】
解:,
在数轴上表示为:
故选:C.
【点睛】
本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则.
4、B
【解析】
【分析】
先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.
【详解】
解:,
移项得:
解得:
所以原不等式得解集:.
把解集在数轴上表示如下:
故选B
【点睛】
本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.
5、A
【解析】
【分析】
先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定的范围.
【详解】
解:
解不等式①得:x,
解不等式②得:x<,
∴不等式组的解集是<x<,
∵原不等式组的整数解有3个为1,0,-1,
∴-2≤<-1.
故选择:A.
【点睛】
本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.
6、D
【解析】
【分析】
解一元一次不等式求出不等式的解集,由此即可得出答案.
【详解】
解:不等式的解集为,
在数轴上的表示如下:
故选:D.
【点睛】
本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.
7、D
【解析】
【分析】
根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.
【详解】
解:当x=5时,4x+7(x-2)=41>8,
当x=4时,4x+7(x-2)=30>8,
当x=3时,4x+7(x-2)=19>8,
当x=2时,4x+7(x-2)=8.
故知x=2不是原不等式的解.故A,B,C不符合题意,D符合题意,
故选D
【点睛】
本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.
8、A
【解析】
【分析】
先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.
【详解】
解:解方程3﹣2x=3(k﹣2),得:,
由题意得,解得:,
解不等式,得:,
解不等式,得:,
不等式组有解,
,则,
符合条件的整数的值的和为,
故选A.
【点睛】
本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.
9、C
【解析】
【分析】
由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.
【详解】
解: a+b+c=0,且|a|>|b|>|c|,
当时,则 则 不符合题意;
从而:中至少有一个负数,至多两个负数,
当 且|a|>|b|>|c|,
此时B,C成立,A,D不成立,
当 且|a|>|b|>|c|,
此时A,C成立,B,D不成立,
综上:结论一定正确的是C,
故选C
【点睛】
本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.
10、D
【解析】
【分析】
根据不等式得性质判断即可.
【详解】
A. 若,则不等式两边同时加3,不等号不变,选项正确;
B. 若,则不等式两边同时乘-3,不等号改变,选项正确;
C. 若2,则不等式两边同时除2,不等号不变,选项正确;
D. 若,则不等式两边同时乘,有可能,选项错误;
故选:D.
【点睛】
本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.
二、填空题
1、
【解析】
【分析】
设则化为:整理可得:,从而可得的解集是不等式的解集,从而可得答案.
【详解】
解: 关于x的一元一次不等式的解集为,
设
则化为:
两边都乘以得: 即
的解集为:的解集,
故答案为:
【点睛】
本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.
2、
【解析】
【分析】
先解一元一次不等式组中的两个不等式,再根据解集为,可得,从而可得答案.
【详解】
解:
由①得:
由②得:
不等式组的解集为,
故答案为:
【点睛】
本题考查的是一元一次不等式组的解法,利用一元一次不等式组的解集求解参数的取值范围,掌握一元一次不等式组的解法是解题的关键.
3、37
【解析】
【分析】
设明年空气质量良好的天数比去年要增加x天,根据题意表示出明年空气质量良好的天数比去年要增加的天数进而得出不等式求出答案.
【详解】
解:设明年空气质量良好的天数比去年要增加x天,根据题意可得:
x>365×(90%﹣80%),
解得:x>36.5,
∵x为整数,
∴x≥37,
∴明年空气质量良好的天数比去年至少要增加37天.
故答案为:37
【点睛】
此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.
4、
【解析】
【分析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【详解】
解:解不等式得:
解不等式得:
原不等式组的解集为
故答案为:
【点睛】
本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键.
5、x>-5
【解析】
【分析】
根据不等式的性质求解即可.
【详解】
解:,
3x>-15,
解得x>-5,
故答案为:x>-5.
【点睛】
此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.
三、解答题
1、(1) ;(2)
【解析】
【分析】
(1)先去括号,两边同时加上 ,得到,然后合并同类项,最后不等式两边同时除以2,即可求解;
(2)分别解出两个不等式,即可求解.
【详解】
解:(1)5x>3(x﹣2)+2.
去括号,得:,
不等的两边同时加上 ,得:
合并同类项,得: ,
不等式两边同时除以2,得: ,
所以不等式的解集为;
(2)
解不等式①,得: ,
解不等式② ,得: ,
所以不等式组的解集为: .
【点睛】
本题主要考查了解一元一次不等式和一元一次不等式组,熟练掌握相关运算顺序是解题的关键.
2、(1)长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298
【解析】
【分析】
(1)可根据竖式纸盒+横式纸盒=100个,每个竖式纸盒需1个正方形纸板和4个长方形纸板,每个横式纸盒需3个长方形纸板和2个正方形纸板来填空;
(2)根据题意,列不等式组求解即可;
(3)设可以生产竖式纸盒m个,横式纸盒个,可列出方程,再根据a的取值范围求出a的取值范围即可.
【详解】
解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,
则长方形纸板用了张,正方形纸板用了张
∴长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张.
(2)依题意,得:, 解得:.
∵x为整数,
∴x=38,39,40,
∴共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个.
(3)设可以生产竖式纸盒m个,横式纸盒个,由此可得,为偶数,依题意,得:
∵
∴
∴
∴或
∴或
答:a的值为293或298.
【点睛】
本题考查一元一次不等式组的应用,列代数式,解题的关键是读懂题意,找到等量关系,正确列不等式求解,注意实际问题最后取整数解.
3、(1)(2)
【解析】
【分析】
(1)去括号,移项合并同类项,求解不等式即可;
(2)去分母,去括号,移项合并同类项,求解不等式即可.
【详解】
解:(1)去括号,得:2x﹣2﹣9x﹣6>x+5,
移项,得:2x﹣9x﹣x>5+2+6,
合并,得:﹣8x>13,
系数化为1,得:;
(2)去分母,得:5(2+x)>3(2x﹣1)﹣30,
去括号,得:10+5x>6x﹣3﹣30,
移项,得:5x﹣6x>﹣3﹣30﹣10,
合并同类项,得:﹣x>﹣43,
系数化为1,得:x<43.
【点睛】
此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤.
4、不等式组的解集为:;整数解为:-1,0,1,2.
【解析】
【分析】
分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴不等式组的整数解为:-1,0,1,2.
【点睛】
本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错.
5、不等式组的解集为:;整数解为:-1,0,1,2.
【解析】
【分析】
分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,从而而可得不等式组得整数解.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴不等式组的整数解为:-1,0,1,2.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试单元测试同步达标检测题,共22页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。
这是一份北京课改版第八章 因式分解综合与测试单元测试当堂达标检测题,共15页。试卷主要包含了若,则E是等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试单元测试课时训练,共15页。试卷主要包含了若,则E是,若x2+ax+9=,下列因式分解正确的是等内容,欢迎下载使用。