北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后作业题
展开这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后作业题,共21页。试卷主要包含了不等式组的解集在数轴上应表示为,下列不等式组,无解的是,已知,为实数,下列说法等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,下列结论正确的是( )
A.c>a>b B. C.|a|<|b| D.abc>0
2、若不等式(a+1)x>2的解集为x<,则a的取值范围是( )
A.a<1 B.a<-1 C.a>1 D.a>-1
3、不等式2x﹣1<3的解集在数轴上表示为( )
A. B.
C. D.
4、不等式组的解集在数轴上应表示为( )
A. B.
C. D.
5、下列不等式组,无解的是( )
A. B. C. D.
6、已知,为实数,下列说法:①若,且,互为相反数,则;②若,,则;③若,则;④若,则是正数;⑤若,且,则,其中正确的说法有 个.A.2 B.3 C.4 D.5
7、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )
A.24人 B.23人 C.22人 D.不能确定
8、不等式的整数解是1,2,3,4.则实数a的取值范围是( )
A. B. C. D.
9、若a+b+c=0,且|a|>|b|>|c|,则下列结论一定正确的是( )
A.abc>0 B.abc<0 C.ac>ab D.ac<ab
10、对不等式进行变形,结果正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若不等式组无解,则m的取值范围是______.
2、若关于x的不等式有三个正整数解,则a的取值范围是____________.
3、已知,用“<”或“>”填空:
(1)_____;(2)______;(3)______;(4)_______0.
4、不等式组的整数解为___.
5、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.
三、解答题(5小题,每小题10分,共计50分)
1、某洗化日化公司为扩大经营,决定购进10台机器生产洗手液,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产洗手液的产量如表所示,经过预算,本次购买机器所耗资金不能超过44万元.
| 甲 | 乙 |
价格(万元/台) | 6 | 4 |
每台日产量(吨) | 15 | 10 |
(1)按该公司要求可以有几种购买方案(可以只选一种机器)?请写出所有的购买方案.
(2)若该公司购进的10台机器的日生产能力不能低于102吨,那么为了节约资金应选择哪种购买方案?
2、计算:
(1)解不等式2x﹣11<4(x﹣3)+3;
(2)解不等式组.
3、解不等式组,并把解集在数轴上表示出来.
4、为奖励在文艺汇演中表现突出的同学,班主任派小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.
(1)求购买每个笔记本和每支钢笔各多少元?
(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?
5、某厨具店购进A型和B型两种电饭煲进行销售, 其进价与售价如表:
| 进价(元/台) | 售价(元/台) |
A型 | 200 | 300 |
B型 | 180 | 260 |
(1)一季度, 厨具店购进这两种电饭煲共30台, 用去了5600元, 问该厨具店购进A,B型电饭煲各多少台?
(2)为了满足市场需求, 二季度厨具店决定用不超过9560元的资金采购两种电饭煲共50 台, 且A型电饭俣的数量不少于B型电饭煲数量, 问厨具店有哪几种进货方案?
(3)在(2)的条件下, 全部售完, 请你通过计算判断, 哪种进货方案厨具店利润最大, 并求出最大利润.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据数轴可得:再依次对选项进行判断.
【详解】
解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,
即可得:,
A、由,得,故选项错误,不符合题意;
B、,根据不等式的性质可得:,故选项正确,符合题意;
C、,可得,故选项错误,不符合题意;
D、,故,故选项错误,不符合题意;
故选:B.
【点睛】
本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出.
2、B
【解析】
【分析】
根据不等式的性质可得,由此求出的取值范围.
【详解】
解:不等式的解集为,
不等式两边同时除以时不等号的方向改变,
,
,
故选:B.
【点睛】
本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变.
3、D
【解析】
【分析】
先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.
【详解】
解:由2x﹣1<3得:x<2,
则不等式2x﹣1<3的解集在数轴上表示为
,
故选:D.
【点睛】
本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.
4、B
【解析】
【分析】
在数轴上把不等式组的解集表示出来,即可选项答案.
【详解】
解:不等式组的解集在数轴上应表示为:
故选:B.
【点睛】
本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点.
5、D
【解析】
【分析】
根据不等式组的解集的求解方法进行求解即可.
【详解】
解:A、,解得,解集为:,故不符合题意;
B、,解得,解集为:,故不符合题意;
C、,解得,解集为:,故不符合题意;
D、,解得,无解,符合题意;
故选:D.
【点睛】
本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.
6、C
【解析】
【分析】
①除0外,互为相反数的商为,可作判断;
②由两数之和小于0,两数之积大于0,得到与都为负数,即小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;
③由的绝对值等于它的相反数,得到为非正数,得到与的大小,即可作出判断;
④由绝对值大于绝对值,分情况讨论,即可作出判断;
⑤先根据,得,由和有理数乘法法则可得,,分情况可作判断.
【详解】
解:①若,且,互为相反数,则,本选项正确;
②若,则与同号,由,则,,则,本选项正确;
③,即,
,即,本选项错误;
④若,
当,时,可得,即,,所以为正数;
当,时,,,所以为正数;
当,时,,,所以为正数;
当,时,,,所以为正数,
本选项正确;
⑤,
,
,
,,
当时,,
,不符合题意;
所以,,
,
则,
本选项正确;
则其中正确的有4个,是①②④⑤.
故选:.
【点睛】
本题考查了相反数,不等式的性质,绝对值和有理数的混合运算,熟练掌握各种运算法则是解本题的关键.
7、C
【解析】
【分析】
根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.
【详解】
解:设每组预定的学生数为x人,由题意得,
解得
是正整数
故选:C.
【点睛】
本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.
8、A
【解析】
【分析】
先确定 再分析不符合题意,确定 再解不等式,结合不等式的整数解可得:,从而可得答案.
【详解】
解:
显然:
当时,不等式的解集为:,
不等式没有正整数解,不符合题意,
当时,不等式的解集为:
不等式的整数解是1,2,3,4,
由①得:
由②得:
所以不等式组的解集为:
故选A
【点睛】
本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键.
9、C
【解析】
【分析】
由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.
【详解】
解: a+b+c=0,且|a|>|b|>|c|,
当时,则 则 不符合题意;
从而:中至少有一个负数,至多两个负数,
当 且|a|>|b|>|c|,
此时B,C成立,A,D不成立,
当 且|a|>|b|>|c|,
此时A,C成立,B,D不成立,
综上:结论一定正确的是C,
故选C
【点睛】
本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.
10、D
【解析】
【分析】
根据不等式的基本性质进行逐一判断即可得解.
【详解】
A.不等式两边同时减b得,故选项A错误;
B.不等式两边同时减2得,故选项B错误;
C.不等式两边同时乘2得,故选项C错误;
D.不等式两边同时乘得,不等式两边再同时加1得,故选项D准确.
故选:D.
【点睛】
本题主要考查了不等式的基本性质,注意不等式两边都加上或减去一个数或整式,不等号方向不变,不等式两边同时乘或除以一个正数,不等号的方向不变,不等式两边同时乘或除以一个负数,要改变不等号的方向.
二、填空题
1、
【解析】
【分析】
求得第一个不等式的解集,借助数轴即可求得m的取值范围.
【详解】
解不等式,得x>2
因不等式组无解,把两个不等式的解集在数轴上表示出来如下:
观察图象知,当m≤2时,满足不等式组无解
故答案为:
【点睛】
本题考查了根据不等式组解的情况确定参数的取值范围,借助数轴数形结合是关键.
2、
【解析】
【分析】
首先确定不等式的正整数解,则a的范围即可求得.
【详解】
解:关于x的不等式恰有3个正整数解,
则正整数解是:1,2,3.
则a的取值范围:.
故答案为:.
【点睛】
本题主要考查一元一次不等式组的整数解,根据a的取值范围正确确定a与3和4的关系是关键.
3、 < < > <
【解析】
【分析】
根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.
【详解】
解:(1)不等式两边都减去3可得;
(2)不等式两边都乘以6可得;
(3)不等式两边都乘以可得;
(4)不等式两边都减去b可得;
故答案为: <;<;>;<.
【点睛】
此题主要考查了不等式的基本性质.解题时要注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.解题的关键是掌握不等式的基本性质.
4、2
【解析】
【分析】
分别解两个不等式取公共解,再根据解集求得整数解.
【详解】
解:解不等式得,,
解不等式得,,
∴该不等式的解集为:,整数解为2,
故答案为:2.
【点睛】
本题考查解不等式组.解不等式组其实就是分别解两个不等式,取公共解集.
5、5或6
【解析】
【分析】
设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.
【详解】
解:设共有间宿舍,则共有个学生,
依题意得:,
解得:.
又为正整数,
或6.
故答案为:5或6.
【点睛】
本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.
三、解答题
1、(1)有三种购买方案,方案一:购买乙机器人10台;方案二:购买甲机器人1台,乙机器人9台;方案三:购买甲机器人2台,乙机器人8台;(2)为了节约资金应选择方案二
【解析】
【分析】
(1)设购买甲机器人x台,则购买乙机器人(10-x)台,根据题意列式,解得,即x可取0,1,2三个值,即可得;
(2)通过计算,只有方案二,方案三符合题意,求出方案二,方案三所耗的资金,进行比较即可得.
【详解】
解:(1)设购买甲机器人x台,则购买乙机器人(10-x)台,
,
即x可取0,1,2三个值,
所以该公司按要求可以有三种购买方案,
方案一:购买乙机器人10台;
方案二:购买甲机器人1台,乙机器人9台;
方案三:购买甲机器人2台,乙机器人8台;
(2)方案一:,不符合题意;
方案二:,符合题意,
所耗资金为:(万元);
方案三:,符合题意,
所耗资金为:(万元);
∵42<44,
∴为了节约资金应选择方案二.
【点睛】
本题考查了一元一次不等式的应用,解题的关键是根据题意列一元一次不等式.
2、(1)x>﹣1;(2)<x≤7
【解析】
【分析】
(1)按照去括号、移项、合并同类项、系数化为1的步骤解答;
(2)先分别解不等式,即可得到不等式组的解集.
【详解】
解:(1)去括号,得:2x﹣11<4x﹣12+3,
移项,得:2x﹣4x<﹣12+3+11,
合并同类项,得:﹣2x<2,
系数化为1,得:x>﹣1;
(2)
解不等式①得:x>,
解不等式②得:x≤7,
则不等式组的解集为<x≤7.
【点睛】
此题考查了解一元一次不等式及不等式组,正确掌握不等式的性质计算是解题的关键.
3、﹣2<x≤1,图见解析
【解析】
【分析】
分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分,再在数轴上表示不等式组是解集即可.
【详解】
解:,
∵解不等式①得:x≤1,
解不等式②得:x>﹣2,
∴不等式组的解集为:﹣2<x≤1.
在数轴上表示不等式组的解集为:
【点睛】
本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握解不等式组的方法是解本题的关键.
4、(1)设每个笔记本3元,每支钢笔5元;(2)有三种购买方案:①购买笔记本10个,则购买钢笔14个;②购买笔记本11个,则购买钢笔13个;③购买笔记本12个,则购买钢笔12个.
【解析】
【分析】
(1)每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可;
(2)设购买笔记本m个,则购买钢笔(24-m)个利用总费用不超过100元和钢笔数不少于笔记本数列出不等式组求得m的取值范围后即可确定方案.
【详解】
解:(1)设每个笔记本x元,每支钢笔y元
依题意得:
解得:
答:设每个笔记本3元,每支钢笔5元.
(2)设购买笔记本m个,则购买钢笔(24-m)个
依题意得:
解得:12≥m≥10
∵m取正整数
∴m=10或11或12
∴有三种购买方案:①购买笔记本10个,则购买钢笔14个.
②购买笔记本11个,则购买钢笔13个.
③购买笔记本12个,则购买钢笔12个.
【点睛】
本题考查了一元一次不等式组的应用及二元一次方程组的应用,解题的关键是仔细的分析题意并找到等量关系列方程或不等关系列不等式.
5、(1)厨具店购进A,B型电饭煲各10台,20台;(2)有四种方案:①购买A型电饭煲25台,购买B型电饭煲25台;②购买A型电饭煲26台,购买B型电饭煲24台;③购买A型电饭煲27台,购买B型电饭煲23台,④购买A型电饭煲28,购买B型电饭煲22台;(3)购买A型电饭煲28,购买B型电饭煲22台时,橱具店赚钱最多.
【解析】
【分析】
(1)设橱具店购进A型电饭煲x台,B型电饭煲y台,根据橱具店购进这两种电饭煲共30台且用去了5600元,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,即可;
(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据橱具店决定用不超过9560元的资金采购电饭煲和电压锅共50个且A型电饭俣的数量不少于B型电饭煲数量,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由此即可得出各进货方案;
(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润,比较后即可得出结论.
【详解】
解:(1)设橱具店购进A型电饭煲x台,B型电饭煲y台,
根据题意得:,解得:,
答:厨具店购进A,B型电饭煲各10台,20台;
(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,
根据题意得:,
解得:25≤a≤28.
又∵a为正整数,
∴a可取25,26,27,28,
故有四种方案:①购买A型电饭煲25台,购买B型电饭煲25台;②购买A型电饭煲26台,购买B型电饭煲24台;③购买A型电饭煲27台,购买B型电饭煲23台,④购买A型电饭煲28,购买B型电饭煲22台;
(3)设橱具店赚钱数额为w元,
当a=25时,w=25×100+25×80=4500;
当a=26时,w=26×100+24×80=4520;
当a=27时,w=27×100+23×80=4540;
当a=28时,w=28×100+22×80=4560;
综上所述,当a=28时,w最大,
即购买A型电饭煲28,购买B型电饭煲22台时,橱具店赚钱最多.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据数量关系,列出关于a的一元一次不等式组;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试巩固练习,共23页。试卷主要包含了下列命题是假命题的有,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试测试题,共16页。试卷主要包含了已知,已知整数,下列计算正确的是,观察下列这列式子,下列各式中,计算正确的是等内容,欢迎下载使用。
这是一份初中数学第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共19页。试卷主要包含了由x>y得ax<ay的条件应是,若不等式等内容,欢迎下载使用。