初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后作业题
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后作业题,共19页。试卷主要包含了下列不等式组,无解的是,若m<n,则下列各式正确的是,已知 a<b,则等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )
A.-3 B.3 C.-4 D.4
2、对不等式进行变形,结果正确的是( )
A. B. C. D.
3、在数轴上点A,B对应的数分别是a,b,点A在表示﹣3和﹣2的两点之间(包括这两点)移动,点B在表示﹣1和0的两点(包括这两点)之间移动,则以下四个代数式的值可能比2021大的是( )
A. B. C. D.
4、不等式组的解是x>a,则a的取值范围是( )
A.a<3 B.a=3 C.a>3 D.a≥3
5、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解.则所有符合条件的整数a的和为( )
A.23 B.25 C.27 D.28
6、不等式的解集在数轴上表示正确的是 ( )
A. B.
C. D.
7、下列不等式组,无解的是( )
A. B. C. D.
8、若m<n,则下列各式正确的是( )
A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n2
9、已知 a<b,则( )
A.a﹣2>b﹣2 B.﹣a+1>﹣b+1 C.ac<bc D.
10、如图,下列结论正确的是( )
A.c>a>b B. C.|a|<|b| D.abc>0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、a,b两个实数在数轴上的对应点如图所示:
用“<”或“>”填空:
(1)a______b;
(2)_____;
(3)______0;
(4)______0;
(5)______;
(6)______a.
2、已知a>b,且c≠0,用“>”或“<”填空.
(1)2a________a+b
(2)_______
(3)c-a_______c-b
(4)-a|c|_______-b|c|
3、不等式组的解集为______.
4、某方便面外包装标明“净含量为250g10g”,用不等式表示这袋方便面的净含量x是___________.
5、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________.
三、解答题(5小题,每小题10分,共计50分)
1、解不等式组:.
2、解不等式:
(1)4(x﹣1)+3>3x
(2)
3、解下列不等式 (组):
(1) 4x-1⩾2x+4
(2)
4、已知关于x的方程的解是非负数,m是正整数,求m的值.
5、用不等式表示:
(1)x与-3的和是负数;
(2)x与5的和的28%不大于-6;
(3)m除以4的商加上3至多为5.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解.
【详解】
解:由关于x的不等式组解得
∵关于x的不等式组有且只有3个奇数解
∴,解得
关于y的方程3y+6a=22-y,解得
∵关于y的方程3y+6a=22-y的解为非负整数
∴,且为整数
解得且为整数
又∵,且为整数
∴符合条件的有、、
符合条件的所有整数a的积为
故选:A
【点睛】
本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.
2、D
【解析】
【分析】
根据不等式的基本性质进行逐一判断即可得解.
【详解】
A.不等式两边同时减b得,故选项A错误;
B.不等式两边同时减2得,故选项B错误;
C.不等式两边同时乘2得,故选项C错误;
D.不等式两边同时乘得,不等式两边再同时加1得,故选项D准确.
故选:D.
【点睛】
本题主要考查了不等式的基本性质,注意不等式两边都加上或减去一个数或整式,不等号方向不变,不等式两边同时乘或除以一个正数,不等号的方向不变,不等式两边同时乘或除以一个负数,要改变不等号的方向.
3、C
【解析】
【分析】
根据已知条件得出,,,求出,,,,再分别求出每个式子的范围,根据式子的范围即可得出答案.
【详解】
,,
,,,,,
,故A选项不符合题意;
,故B选项不符合题意;
可能比2021大,故C选项符合题意;
,故D选项不符合题意;
故选:C.
【点睛】
本题考查数轴、倒数、有理数的混合运算,求出每个式子的范围是解题的关键.
4、D
【解析】
【分析】
根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.
【详解】
解:∵不等式组的解是x>a,
∴,
故选:D.
【点睛】
本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.
5、B
【解析】
【分析】
表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.
【详解】
解:,
解不等式①得:,
解不等式②得:
∴不等式组的解集为:,
∵由不等式组至少有3个整数解,
∴,即整数a=2,3,4,5,…,
∵,
∴
解得:,
∵方程的解为非负数,
∴,
∴
∴得到符合条件的整数a为3,4,5,6,7,之和为25.
故选B.
【点睛】
此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
6、B
【解析】
【分析】
先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.
【详解】
解:,
移项得:
解得:
所以原不等式得解集:.
把解集在数轴上表示如下:
故选B
【点睛】
本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.
7、D
【解析】
【分析】
根据不等式组的解集的求解方法进行求解即可.
【详解】
解:A、,解得,解集为:,故不符合题意;
B、,解得,解集为:,故不符合题意;
C、,解得,解集为:,故不符合题意;
D、,解得,无解,符合题意;
故选:D.
【点睛】
本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.
8、C
【解析】
【分析】
根据不等式的基本性质逐项判断即可.
【详解】
解:A:∵m<n,
∴﹣2m>﹣2n,
∴不符合题意;
B:∵m<n,
∴,
∴不符合题意;
C:∵m<n,
∴﹣m>﹣n,
∴1﹣m>1﹣n,
∴符合题意;
D: m<n,当时,m2>n2,
∴不符合题意;
故选:C.
【点睛】
本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.
9、B
【解析】
【分析】
根据不等式的性质逐项分析即可.
【详解】
解:A、∵a<b,∴a-2<b-2,故不符合题意;
B、∵a<b,∴-a>-b,∴-a+1>-b+1,,故符合题意;
C、∵a<b,当c≤0时,ac<bc不成立,故不符合题意;
D、∵a<b,当c>0时,不成立,故不符合题意;
故选B.
【点睛】
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
10、B
【解析】
【分析】
根据数轴可得:再依次对选项进行判断.
【详解】
解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,
即可得:,
A、由,得,故选项错误,不符合题意;
B、,根据不等式的性质可得:,故选项正确,符合题意;
C、,可得,故选项错误,不符合题意;
D、,故,故选项错误,不符合题意;
故选:B.
【点睛】
本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出.
二、填空题
1、 > < < > < <
【解析】
【分析】
首先观察数轴,得到b<0<a且|b|>|a|,进一步利用加减法计算方法和绝对值的意义解答即可.
【详解】
解:(1)a>b;
(2)|a|<|b|;
(3)a+b<0;
(4)a-b>0;
(5)a+b<a-b;
(6)ab<a.
故答案为:(1)>;(2)<;(3)<;(4)>;(5)<;(6)<.
【点睛】
本题考查了利用数轴、绝对值的意义以及有理数的加减法计算方法解决问题.
2、 > > < <
【解析】
【分析】
(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;
(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;
(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;
(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.
【详解】
解:(1)∵,
∴,
即:;
(2)∵,,
∴;
(3)∵,
∴,
∴;
(4)∵,
∴,,
∴;
故答案为:(1)>;(2)>;(3)<;(4)<.
【点睛】
题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.
3、
【解析】
【分析】
根据解一元一次不等式组的方法求解即可.
【详解】
解:
由不等式①得:
由不等式②得:
不等式组的解集为
故答案为
【点睛】
本题考查了求解一元一次不等式组,掌握一元一次不等式组的解法是解题的关键.
4、240≤x≤260
【解析】
【分析】
根据的意义建立不等式,化简即可.
【详解】
根据题意,得250-10≤x≤250+10,
即240≤x≤260,
故答案为:240≤x≤260.
【点睛】
本题考查了不等式,熟练掌握不等式的表示法是解题的关键.
5、5只和23颗或6只和26颗.
【解析】
【分析】
设猴子的只数为x只,根据题意列出不等式组,求整数解即可.
【详解】
解:设猴子的只数为x只,根据题意列出不等式组得,
,
解得,,
因为x为整数是,
所以,或,
花生的颗数为颗或颗
故答案为:5只和23颗或6只和26颗.
【点睛】
本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.
三、解答题
1、
【解析】
【分析】
分别解两个不等式,取公共解即可.
【详解】
解:
解等式①得,
解不等式②得,
故,
【点睛】
本题考查解不等式组.掌握利用“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是解题关键.
2、(1);(2)
【解析】
【分析】
(1)先去括号,再移项,合并同类项即可得到答案;
(2)先去分母,去括号,再移项,合并同类项,再把未知数的系数化“1”,从而可得答案.
【详解】
解:(1)4(x﹣1)+3>3x
去括号得:
移项,合并同类项得:
(2)
去分母得:
移项,合并同类项得:
解得:
【点睛】
本题考查的是一元一次不等式的解法,掌握解一元一次不等式的基本步骤是解本题的关键.
3、(1)x≥2.5;(2)-3≤x≤1
【解析】
【分析】
(1)通过移项,合并同类项,未知数系数化为1,即可求解;
(2)分别算出各个不等式的解,再取它们的公共部分,即可.
【详解】
解:(1) 4x-1≥2x+4,
移项得:4x-2x≥4+1,
合并同类项得:2x ≥5,
解得:x≥2.5;
(2) ,
由①得:x≤1,
由②得:x≥-3,
∴不等式组的解为:-3≤x≤1.
【点睛】
本题主要考查解一元一次不等式(组),熟练掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.
4、m的值为1或2
【解析】
【分析】
先求出方程的解,再由x为非负数,可得到关于 的不等式,解出即可.
【详解】
解:
去分母得: ,
解得:x=,
因为x为非负数,
所以≥0,即m≤2,
又m是正整数,
所以m的值为1或2.
【点睛】
本题主要考查了方程的解和解一元一次不等式,根据题意得到关于 的不等式是解题的关键.
5、(1)x-3<0;(2)28%(x+5)≤-6;(3)≤5.
【解析】
【分析】
(1)根据负数是小于0的数列不等式即可;
(2)不大于即小于或等于,根据不大于的含义列不等式即可;
(3)至多即小于或等于,根据至多的含义列不等式即可.
【详解】
解:(1)x-3<0;
(2)28%(x+5)≤-6;
(3)≤5.
【点睛】
本题考查的列不等式,列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式.在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x是非负数,则x≥0;若x是非正数,则x≤0;若x大于y,则有x-y>0;若x小于y,则有x-y<0等.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试复习练习题,共22页。试卷主要包含了下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共16页。试卷主要包含了已知c<a<b<0,若M=|a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。