初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试巩固练习
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共18页。试卷主要包含了下列选项正确的是,若,则x一定是,下列式子等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若x+2022>y+2022,则( )
A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y
2、如果 , 那么下列不等式中不成立的是( )
A. B.
C. D.
3、设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m;②若m>1,<m;③若<m,则m>0;④若>m,则0<m<1,其中是真命题的是( )
A.①② B.①③ C.②③ D.②④
4、不符式的解集在数轴上表示正确的是( )
A. B.
C. D.
5、下列选项正确的是( )
A.不是负数,表示为
B.不大于3,表示为
C.与4的差是负数,表示为
D.不等于,表示为
6、若,则x一定是( )
A.零 B.负数 C.非负数 D.负数或零
7、不等式的解集在数轴上表示正确的是( )
A. B.
C. D.
8、已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为( )
A.0<m<2 B.0≤m<2 C.0<m≤2 D.0≤m≤2
9、下列式子:①5<7;②2x>3;③y≠0;④x≥5;⑤2a+l;⑥;⑦x=1.其中是不等式的有( )
A.3个 B.4个 C.5个 D.6个
10、已知关于x的不等式组恰有4个整数解,则a的取值范围是( )
A.﹣1<a<﹣ B.﹣1≤a≤﹣ C.﹣1<a≤﹣ D.﹣1≤a<﹣
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于x的不等式组有解,则a的取值范围是______.
2、满足不等式的最小整数解是_________.
3、不等式组的整数解是__________.
4、根据“3x与5的和是负数”可列出不等式 _________.
5、不等式组的整数解为___.
三、解答题(5小题,每小题10分,共计50分)
1、根据要求解不等式或答题
(1);
(2)若关于的不等式组有四个整数解,则的取值范围是?
(3);
(4).
2、(1)解不等式x+2<6;
(2)解不等式+1≥,并把它的解集在数轴上表示出来.
3、解下列不等式:
(1);
(2).
4、解不等式(组):
(1);
(2).
5、解不等式组,并写出所有整数解.(不画数轴)
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
直接根据不等式的性质可直接进行排除选项
【详解】
解:∵x+2022>y+2022,
∴x>y,
∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.
故答案为:C.
【点睛】
本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.
2、D
【解析】
【分析】
根据不等式的性质逐个判断即可.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
【详解】
解:A、∵,
∴,选项正确,不符合题意;
B、∵,
∴,选项正确,不符合题意;
C、∵,
∴,选项正确,不符合题意;
D、∵,
∴,选项错误,符合题意.
故选:D.
【点睛】
此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
3、A
【解析】
【分析】
根据不等式的性质,逐项判断,即可.
【详解】
解:①若﹣1<m<0,则<m,是真命题;
②若m>1,<m,是真命题;
③若<m,当 时, ,而 ,则原命题是假命题;
④若>m,当 时, ,而 ,则原命题是假命题;
则真命题有①②.
故选:A
【点睛】
本题主要考查了命题的真假,熟练掌握一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可是解题的关键.
4、D
【解析】
【分析】
先求出不等式的解集,再根据解集在数轴上的表示方法表示即可.
【详解】
解:,
解得:,
在数轴上表示解集为:
,
故选:D.
【点睛】
题目主要考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.
5、C
【解析】
【分析】
由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.
【详解】
解:.不是负数,可表示成,故本选项不符合题意;
.不大于3,可表示成,故本选项不符合题意;
.与4的差是负数,可表示成,故本选项符合题意;
.不等于,表示为,故本选项不符合题意;
故选:C.
【点睛】
本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.
6、D
【解析】
【分析】
根据绝对值的性质可得,求解即可.
【详解】
解:∵
∴,解得
故选D
【点睛】
此题考查了绝对值和不等式的性质,解题的关键是熟练掌握绝对值和不等式的有关性质.
7、A
【解析】
【分析】
先解不等式,再利用数轴的性质解答.
【详解】
解:
解得,
∴不等式的解集在数轴上表示为:
故选:A.
【点睛】
此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.
8、B
【解析】
【分析】
由2x-m>4得x>,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出≥2、<3,解之即可得出答案.
【详解】
解:由2x-m>4得x>,
∵x=2不是不等式2x-m>4的整数解,
∴≥2,
解得m≥0;
∵x=3是关于x的不等式2x-m>4的一个整数解,
∴<3,
解得m<2,
∴m的取值范围为0≤m<2,
故选:B.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式.
9、C
【解析】
【分析】
主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.
【详解】
解:①②③④⑥均为不等式共5个.
故选:C
【点睛】
本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.
10、D
【解析】
【分析】
先分别求得每个一元一次不等式的解集,再根据题意得出2a的取值范围即可解答.
【详解】
解:解不等式组得:,
∵该不等式组恰有4个整数解,
∴-2≤2a<-1,
解得:﹣1≤a<﹣,
故选:D.
【点睛】
本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,得出2a的取值范围是解答的关键.
二、填空题
1、a>3
【解析】
【分析】
由题意直接根据不等式组的解集的表示方法进行分析可得答案.
【详解】
解:由题意得:a>3,
故答案为:a>3.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、5
【解析】
【分析】
先求出不等式的解集,然后求出满足题意的最小整数解即可.
【详解】
解:解不等式得: ,
∴满足不等式的最小整数解是5,
故答案为:5.
【点睛】
本题主要考查了解一元一次不等式和求满足题意的不等式的最小整数解,解题的关键在于能够熟练掌握解不等式的方法.
3、-1、0
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集即可得出答案.
【详解】
解:解不等式,
得:,
解不等式,
得:,
则不等式组的解集为,
∴不等式组的整数解为-1、0,
故答案为:-1、0.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解题的关键.
4、
【解析】
【分析】
3x与5的和为,和是负数即和小于0,列出不等式即可得出答案.
【详解】
3x与5的和是负数表示为.
故答案为:.
【点睛】
本题考查列不等式,根据题目信息确定不等式是解题的关键.
5、2
【解析】
【分析】
分别解两个不等式取公共解,再根据解集求得整数解.
【详解】
解:解不等式得,,
解不等式得,,
∴该不等式的解集为:,整数解为2,
故答案为:2.
【点睛】
本题考查解不等式组.解不等式组其实就是分别解两个不等式,取公共解集.
三、解答题
1、(1)-1≤x<;(2)≤a<;(3)当m>2时,x>;当m<2时,x<;(4)1<x<4.
【解析】
【分析】
(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;
(2)先解每一个不等式,根据范围内有四个整数解,确定a的取值范围;
(3)利用不等式的解法分别从m>2和m<2分别求解即可;
(4)根据绝对值的性质分别从x<-1,-1≤x≤0,0<x≤2与x>2四种情况分别化简不等式,再利用不等式的解法分别求解,即可得出原不等式的解集.
【详解】
解:(1)
解不等式①得x≥-1,
解不等式②得x<,
∴不等式组的解集为-1≤x<.
(2)
由不等式①,得2x-3x<-9+1,解得x>8,
由不等式②,得3x+2>4x+4a,解得x<2-4a,
∵不等式组有四个整数解,即:9,10,11,12,
∴12<2-4a≤13,
解得≤a<;
(3),
移项,得,
合并同类项,得,
当m>2时,x>;
当m<2时,x<;
(4),
当x<-1时,原绝对值不等式可化为,
解得x>4,与x<-1矛盾,故此不等式无解;
当-1≤x≤0时,原绝对值不等式可化为,
解得x>与-1≤x≤0矛盾,故此不等式无解;
当0<x≤2时,原绝对值不等式可化为,
解得x>1,则1<x≤2;
当x>2,原绝对值不等式可化为,
解得x<4,则2<x<4,
故原不等式的解集为1<x<4.
【点睛】
本题考查了一元一次不等式与不等式组的解法及整数解的确定,熟练掌握一元一次不等式的解法及不等式组的解集的确定方法是解题的关键.
2、(1);(2),数轴见解析
【解析】
【分析】
(1)直接移项即可解得不等式的解集;
(2)先去分母再去括号,进而求得不等式的解集,并把它的解集在数轴上表示出来
【详解】
(1)x+2<6;
(2)+1≥,
解得
在数轴上表示,如图,
【点睛】
本题考查了解一元一次不等式,在数轴上表示不等式的解集,准确的计算和数形结合是解题的关键.
3、(1);(2).
【解析】
【分析】
(1)由题意去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集;
(2)由题意去分母,去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集.
【详解】
解:(1),
去括号得:
,
移项,合并同类项得:
,
不等式的两边同除以得:
.
不等式的解集是:.
(2),
去分母得:
,
去括号得:
,
移项,合并同类项得:
,
不等式的两边同除以得:
.
不等式的解集是:.
【点睛】
本题主要考查一元一次不等式的解法,熟练掌握并利用解一元一次不等式的一般步骤解答是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)把不等式转化为一元一次不等式后再求解;
(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集即可.
【详解】
解:(1),
,
,
,
解得:;
(2),
由①得:,
由②得:,
则不等式组的解集为.
【点睛】
本题考查了解一元一次不等式组,解题的关键是熟练掌握运算法则.
5、不等式组的解集为:;整数解为:-1,0,1,2.
【解析】
【分析】
分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴不等式组的整数解为:-1,0,1,2.
【点睛】
本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错.
相关试卷
这是一份2021学年第四章 一元一次不等式和一元一次不等式组综合与测试精练,共19页。试卷主要包含了下列选项正确的是,解集如图所示的不等式组为,如图,数轴上表示的解集是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试精练,共20页。试卷主要包含了已知,为实数,下列说法,下列说法中,正确的是,已知 a<b,则,若a<b,则下列式子正确的是等内容,欢迎下载使用。
这是一份2021学年第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共19页。试卷主要包含了如果,那么下列不等式中正确的是,若不等式组解集是,则等内容,欢迎下载使用。