【历年真题】2022年北京市怀柔区中考数学第一次模拟试题(含详解)
展开
这是一份【历年真题】2022年北京市怀柔区中考数学第一次模拟试题(含详解),共31页。试卷主要包含了如图,在中,,,则的值为,已知,,且,则的值为,下列命题中,真命题是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。
2022年北京市怀柔区中考数学第一次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )A.20228 B.10128 C.5018 D.25092、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )A.个 B.个 C.个 D.个3、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )A.60° B.120° C.135° D.150°4、下图中能体现∠1一定大于∠2的是( )A. B.C. D.5、如图,在中,,,则的值为( )A. B. C. D.6、已知,,且,则的值为( )A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或37、二次函数的图象经过点,,,则,,的大小关系正确的为( )A. B. C. D.8、下列命题中,真命题是( )A.同位角相等B.有两条边对应相等的等腰三角形全等C.互余的两个角都是锐角D.相等的角是对顶角.9、二次函数 y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若关于 x 的方程ax2+bx+c=1 有两个根,则这两个根的和为﹣4;④若关于 x 的方程 a(x+5)(x﹣1)=﹣1 有两个根 x1和 x2,且 x1<x2,则﹣5<x1<x2<1.其中正确的结论有( )A.1 个 B.2 个 C.3 个 D.4 个10、下列图形是中心对称图形的是( ).A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.2、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.3、一次函数y=﹣x+1的图象与反比例函数y=的图象交点的纵坐标为2,当﹣3<x<﹣1时,反比例函数y=中y的取值范围是 _____.4、如图,点、点是线段上的两个点,且,如果AB=5cm,CD=1cm,那么的长等于_______cm.5、如图,已知正方形ABCD的边长为5,点E,F分别是AB,BC边上的点,且∠EDF=45°,将△ADE绕点D逆时针旋转90°得到△CDM.若AE=2,则MF的长为_______.三、解答题(5小题,每小题10分,共计50分)1、阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如根据以上材料,解答下列问题.(1)分解因式:;(2)求多项式的最小值;(3)已知a,b,c是的三边长,且满足,求的周长.2、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).(1)如图1,在BC上找一点P,使∠BAP=45°;(2)如图2,作△ABC的高BH.3、如图,在长方形中,,.延长到点,使,连接.动点从点出发,沿着以每秒1个单位的速度向终点运动,点运动的时间为秒.(1)的长为 ;(2)连接,求当为何值时,;(3)连接,求当为何值时,是直角三角形;(4)直接写出当为何值时,是等腰三角形.4、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:(1)本次调查的学生人数为___________.(2)补全频数直方图.(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议.5、二次函数的图象与y轴交于点A,将点A向右平移4个单位长度,得到点B,点B在二次函数的图象上.(1)求点B的坐标(用含的代数式表示);(2)二次函数的对称轴是直线 ;(3)已知点(,),(,),(,)在二次函数的图象上.若,比较,,的大小,并说明理由. -参考答案-一、单选题1、B【分析】根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.【详解】解:∵第一次操作增加数字:-2,7,第二次操作增加数字:5,2,-11,9,∴第一次操作增加7-2=5,第二次操作增加5+2-11+9=5,即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.故选:B.【点睛】此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.2、A【分析】过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.【详解】解:过点A作AD⊥BC与D,∵BD=4,,∴AD=BD,∵,∴,∴BC=7,∴DC=BC-BD=7-4=3,∴①主视图中正确;∴左视图矩形的面积为3×6=,∴②正确;∴tanC,∴③正确;其中正确的个数为为3个.故选择A.【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.3、B【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=故选:B.【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.4、C【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.5、C【分析】由三角函数的定义可知sinA=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可.【详解】解:在直角三角形ABC中,∠C=90°∵sinA=,∴可设a=5k,c=13k,由勾股定理可求得b=12k,∴cosA=,故选:C.【点睛】本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.6、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.【详解】解:∵,, ,∴x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1.故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.7、B【分析】先求得对称轴为,开口朝下,进而根据点与的距离越远函数值越小进行判断即可.【详解】解:∵∴对称轴为,,开口向下,离对称轴越远,其函数值越小,,,,, 故选B【点睛】本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.8、C【分析】根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.【详解】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;C、互余的两个角都是锐角,本选项说法是真命题;D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、C【分析】求解的数量关系;将代入①式中求解判断正误;②将代入,合并同类项判断正负即可;③中方程的根关于对称轴对称,求解判断正误;④中求出二次函数与轴的交点坐标,然后观察方程的解的取值即可判断正误.【详解】解:由顶点坐标知解得∵∴当时,,故①正确,符合题意;,故②错误,不符合题意;方程的根为的图象与直线的交点的横坐标,即关于直线对称,故有,即,故③正确,符合题意;,与轴的交点坐标为,方程的根为二次函数图象与直线的交点的横坐标,故可知,故④正确,符合题意;故选C.【点睛】本题考查了二次函数的图象与性质,二次函数与二次方程等知识.解题的关键与难点在于从图象中提取信息,并且熟练掌握二次函数与二次方程的关系.10、A【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.【详解】解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:A.【点睛】本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.二、填空题1、11或12【分析】根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.【详解】解:假设共有学生x人,根据题意得出:,解得:10<x≤12.因为x是正整数,所以符合条件的x的值是11或12,故答案为:11或12.【点睛】此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.2、4【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【详解】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵= ,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴== ,∴MN=DE=×8=4.故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.3、<y<2【分析】把一个交点的纵坐标是2代入y=-x+1求出横坐标为-1,把(-1,2)代入y=求出k,令-3<x<-1,求出y=的取值范围,即可求出y的取值范围.【详解】解:令y=2,则2=-x+1,∴x=-1,把(-1,2)代入y=,解得:k=-2,∴反比例函数为y=,当x=-3时,代入y=得y=,∴x=-3时反比例函数的值为:,当x=-1时,代入y=得y=2,又知反比例函数y=在-3<x<-1时,y随x的增大而增大,即当-3<x<-1时反比例函数y的取值范围为:<y<2.【点睛】本题考查了反比例函数与一次函数的交点及正比例函数与反比例函数的性质,难度不大,关键是掌握用待定系数法求解函数的解析式.4、2【分析】,可知,代值求解即可.【详解】解:,故答案为:2.【点睛】本题考查了线段的和与差.解题的关键在于正确的表示各线段之间的数量关系.5、##【分析】由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=2,正方形的边长为5,用ABAE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BMFM=BMEF=7x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为MF的长.【详解】解:∵△ADE逆时针旋转90°得到△CDM,∴∠A=∠DCM=90°,DE=DM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∵∠EDM=∠EDC+∠CDM=∠EDC+∠ADE=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=2,且BC=5,∴BM=BC+CM=5+2=7,∴BF=BMMF=BMEF=7x,∵EB=ABAE=52=3,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即32+(7x)2=x2,解得:,∴MF=.故答案为:.【点睛】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.三、解答题1、(1)(2)(3)12.【分析】(1)先配完全平方,然后利用平方差公式即可.(2)先配方,然后根据求最值即可.(3)对移项、配方,根据平方大于等于0,确定每一项均为0,求解边长,进而得出周长.(1)解:.(2)解:∵∴∴多项式的最小值为.(3)解:∵∴即∴∴,,∴,,∴的周长.【点睛】本题考查了完全平方公式与平方差公式分解因式,代数式的最值,平方等知识.解题的关键在于正确的配方.2、(1)见解析;(2)见解析【分析】(1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.【详解】解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求, 理由如下:根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,∴△ABM≌△BNQ,∴AB=BN,∠ABM=∠BNQ,∴∠BAP=∠BNP,∵∠NBQ+∠BNQ=90°,∴∠ABM +∠BNQ=90°,∴∠ABN=90°,∴∠BAP=∠BNP=45°;(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.理由如下:过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,∴△ACD≌△QBG,∴∠ACD=∠QBG,∵∠QBG+∠BQG=90°,∴∠ACD +∠BQG=90°,∴∠CHQ=90°,∴BH⊥AC,即BH为△ABC的高.【点睛】本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.3、(1)5;(2)秒时,;(3)当秒或秒时,是直角三角形;(4)当秒或秒或秒时,为等腰三角形.【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根据全等三角形的性质可得:,即可求出时间t;(3)分两种情况讨论:①当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;②当时,此时点P与点C重合,得出,即可计算t的值;(4)分三种情况讨论:①当时,②当时,③当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得.【详解】解:(1)∵四边形ABCD为长方形,∴,,在中,,故答案为:5;(2)如图所示:当点P到如图所示位置时,,∵,,∴,仅有如图所示一种情况,此时,,∴,∴秒时,;(3)①当时,如图所示:在中,,在中,,∴,,,∴,解得:;②当时,此时点P与点C重合,∴,∴;综上可得:当秒或秒时,是直角三角形;(4)若为等腰三角形,分三种情况讨论:①当时,如图所示:∵,,∴,∴,∴;②当时,如图所示:,∴;③当时,如图所示:,∴,在中,,即,解得:,,∴;综上可得:当秒或秒或秒时,为等腰三角形.【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键.4、(1)60(2)见解析(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)【分析】(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.(1)解:本次调查的学生人数为名;(2)解:平均每天读书的时间30—50分钟的人数为名,补全频数直方图如下图:(3)解:份.建议:开卷有益,要养成阅读的好习惯【点睛】本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.5、(1)B(4,);(2);(3),见解析【分析】(1)根据题意,令,即可求得的坐标,根据平移的性质即可求得点的坐标;(2)根据题意关于对称轴对称,进而根据的坐标即可求得对称轴;(3)根据(2)可知对称轴为,进而计算点与对称轴的距离,根据抛物线开口朝下,则点离对称轴越远则函数值越小,据此求解即可【详解】解:(1)∵令,∴,∴点A的坐标为(0,),∵将点A向右平移4个单位长度,得到点B,∴点B的坐标为(4,).(2) A的坐标为(0,),点B的坐标为(4,)点都在在二次函数的图象上.即关于对称轴对称对称轴为(3)∵对称轴是直线,,∴点(,),(,)在对称轴的左侧,点(,)在对称轴的右侧,∵,∴,∴,,∵,∴.【点睛】本题考查了平移的性质,二次函数的对称性,二次函数的性质,熟练掌握二次函数的性质是解题的关键.
相关试卷
这是一份【历年真题】2022年北京市燕山地区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共19页。试卷主要包含了下列说法中,不正确的是,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市怀柔区中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共32页。试卷主要包含了下列方程是一元二次方程的是,下列命题正确的是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了下列计算错误的是,下列判断错误的是,下列方程组中,二元一次方程组有等内容,欢迎下载使用。