【历年真题】2022年贵州省铜仁市中考数学模拟定向训练 B卷(含答案及解析)
展开2022年贵州省铜仁市中考数学模拟定向训练 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是( )
A.78 B.70 C.84 D.105
2、几个同学打算合买一副球拍,每人出7元,则还少4元;每人出8元,就多出3元.他们一共有( )个人.
A.6 B.7 C.8 D.9
3、根据表中的信息判断,下列语句中正确的是( )
15 | 15.1 | 15.2 | 15.3 | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16 | |
225 | 228.01 | 231.04 | 234.09 | 237.16 | 240.25 | 243.36 | 246.49 | 249.64 | 252.81 | 256 |
A.
B.235的算术平方根比15.3小
C.只有3个正整数满足
D.根据表中数据的变化趋势,可以推断出将比256增大3.19
4、如图,表示绝对值相等的数的两个点是( )
A.点C与点B B.点C与点D C.点A与点B D.点A与点D
5、下列说法中,正确的是( )
A.东边日出西边雨是不可能事件.
B.抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7.
C.投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次.
D.小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.
6、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
7、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
8、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
9、下列图形绕直线旋转一周,可以得到圆柱的是( )
A. B. C. D.
10、下列格点三角形中,与右侧已知格点相似的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在不等式组的解集中,最大的整数解是______.
2、如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,则阴影部分的面积为____.
3、如图,直线,如果,,,那么线段BE的长是_____________.
4、一个实数的平方根为与,则这个实数是________.
5、计算: _______
三、解答题(5小题,每小题10分,共计50分)
1、在数轴上,表示数m与n的点之间的距离可以表示为|m﹣n|.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题:
(1)若|x﹣5|=3,求x的值;
(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a﹣b|=6(b>a),点C表示的数为﹣2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.
2、如图,在的网格纸中,点O和点A都是格点,以O为圆心,OA为半径作圆.请仅用无刻度的直尺完成以下画图:(不写画法,保留作图痕迹.)
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH;
(2)在图②中画⊙O的一个内接正六边形ABCDEF.
3、计算:
4、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
(1)求点A和点B的坐标;
(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
5、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:.
-参考答案-
一、单选题
1、A
【分析】
设“U”型框中的最下排正中间的数为x,则其它6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,表示出这7个数之和,然后分别列出方程解答即可.
【详解】
解:设“U”型框中的最下排正中间的数为x,则其他6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,
这7个数之和为:x-15+x-8+x-1+x+1+x-6+x-13=7x-42.
由题意得:
A、7x-42=78,解得x=,不能求出这7个数,符合题意;
B、7x-42=70,解得x=16,能求出这7个数,不符合题意;
C、7x-42=84,解得x=18,能求出这7个数,不符合题意;
D、7x-42=105,解得x=21,能求出这7个数,不符合题意.
故选:A.
【点睛】
本题考查一元一次方程的实际运用,掌握“U”型框中的7个数的数字的排列规律是解决问题的关键.
2、B
【分析】
依题意,按照一元一次方程定义和实际应用,列方程计算,即可;
【详解】
由题知,设合买球拍同学的人数为;
∴ ,可得:
∴故选
【点睛】
本题主要考查一元一次方程的实际应用,关键在熟练审题和列方程计算;
3、C
【分析】
根据算术平方根的定义及表格中信息逐项分析即可.
【详解】
A.根据表格中的信息知:,
,故选项不正确;
B.根据表格中的信息知:,
∴235的算术平方根比15.3大,故选项不正确;
C.根据表格中的信息知:,
正整数或242或243,
只有3个正整数满足,故选项正确;
D.根据表格中的信息无法得知的值,
不能推断出将比256增大3.19,故选项不正确.
故选:C.
【点睛】
本题是图表信息题,考查了算术平方根,关键是正确利用表中信息.
4、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
5、D
【分析】
根据概率的意义进行判断即可得出答案.
【详解】
解:A、东边日出西边雨是随机事件,故此选项错误;.
B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;
C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;
D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.
故选:D
【点睛】
此题主要考查了概率的意义,正确理解概率的意义是解题关键.
6、C
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
7、D
【分析】
当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
8、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
9、A
【分析】
根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案.
【详解】
解:A.旋转后可得圆柱,故符合题意;
B. 旋转后可得球,故不符合题意;
C. 旋转后可得圆锥,故不符合题意;
D. 旋转后可得圆台,故不符合题意;
故选:A.
【点睛】
本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.
10、A
【分析】
根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.
【详解】
解:的三边长分别为:,
,,
∵,
∴为直角三角形,B,C选项不符合题意,排除;
A选项中三边长度分别为:2,4,,
∴,
A选项符合题意,
D选项中三边长度分别为:,,,
∴,
故选:A.
【点睛】
题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.
二、填空题
1、4
【分析】
先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.
【详解】
解: ,
解不等式①得,x≥2,
解不等式②得, ,
∴不等式组的解集为,
∴不等式组的最大整数解为4.
故答案为:4.
【点睛】
本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
2、20
【分析】
根据阴影部分的面积等于两个正方形的面积之和减去空白的面积,列式化简,再把a+b=10,ab=20代入计算即可.
【详解】
解:∵大小两个正方形边长分别为a、b,
∴阴影部分的面积S=a2+b2a2(a+b)ba2b2ab;
∵a+b=10,ab=20,
∴Sa2b2ab
(a+b)2ab
10220
=20.
故答案为:20.
【点睛】
本题考查了完全平方公式的几何背景,熟练掌握完全平方公式及正方形和三角形的面积计算是解题的关键.
3、3
【分析】
过点D作DG∥AC交CF于点G,交BE于点H,根据,可得,四边形ABHD和四边形ACGD是平行四边形,从而得到BH=AD=CG=2, ,进而得到FG=4,再由BE∥CF,得到△DEH∽△DFG,从而得到HE=1,即可求解.
【详解】
解:如图,过点D作DG∥AC交CF于点G,交BE于点H,
∵,
∴,四边形ABHD和四边形ACGD是平行四边形,
∴BH=AD=CG=2, ,
∵,
∴FG=4,
∵BE∥CF,
∴△DEH∽△DFG,
∴ ,
∴HE=1,
∴BE=BH+HE=3.
故答案为:3
【点睛】
本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键.
4、
【分析】
根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.
【详解】
解:根据题意得:
①这个实数为正数时:
3x+3+x-1=0,
∴x=-,
∴(x-1)2=,
②这个实数为0时:
3x+3=x-1,
∴x=-2,
∵x-1=-3≠0,
∴这个实数不为0.
故答案为:.
【点睛】
本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.
5、##
【分析】
根据二次根式的加减乘除运算法则逐个运算即可.
【详解】
解:原式,
故答案为:.
【点睛】
本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可.
三、解答题
1、
(1)x=8或x=2
(2)a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8
【分析】
(1)根据两点间的距离公式和绝对值的意义,可得答案;
(2)分类讨论:①C是AB的中点,②当点A为线段BC的中点,③当点B为线段AC的中点,根据线段中点的性质,可得答案.
(1)
解:因为|x﹣5|=3,
所以x﹣5=3或x﹣5=﹣3,
解得x=8或x=2;
(2)
因为|a﹣b|=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.
①当点C为线段AB的中点时,
如图1所示,.
∵点C表示的数为﹣2,
∴a=﹣2﹣3=﹣5,b=﹣2+3=1.
②当点A为线段BC的中点时,
如图2所示,AC=AB=6.
∵点C表示的数为﹣2,
∴a=﹣2+6=4,b=a+6=10.
③当点B为线段AC的中点时,
如图3所示,BC=AB=6.
∵点C表示的数为﹣2,
∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.
综上,a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8.
【点睛】
本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键.
2、
(1)见解析
(2)见解析
【分析】
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH即可;
(2)在图②中画⊙O的一个内接正六边形ABCDEF即可.
(1)
解:如图,正八边形ABCDEFGH即为所求:
(2)
解:如图,正六边形ABCDEF即为所求:
【点睛】
本题考查了作图-应用与设计作图、正多边形和圆,解决本题的关键是准确画图.
3、
【分析】
先将二次根式化简,再去括号、合并即可.
【详解】
解:
【点睛】
本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式.
4、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】
(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;
(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.
【详解】
(1)∵,
∴.
∵,
∴,
∴,
∴,
∴,.
(2)如图,过点F作FH⊥AO于点H
∵AF⊥AE
∴∠FHA=∠AOE=90°,
∵
∴∠AFH=∠EAO
又∵AF=AE,
在和中
∴
∴AH=EO=2,FH=AO=4
∴OH=AO-AH=2
∴F(-2,4)
∵OA=BO,
∴FH=BO
在和中
∴
∴HD=OD
∵
∴HD=OD=1
∴D(-1,0)
∴D(-1,0),F(-2,4);
(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S
∴
∴,
∴
∴
∴
∴等腰
∴NQ=NO,
∵NG⊥PN, NS⊥EG
∴
∴,
∴
∵,
∴
∵点E为线段OB的中点
∴
∴
∴
∴
∴
∴
∴
∴等腰
∴NG=NP,
∵
∴
∴∠QNG=∠ONP
在和中
∴
∴∠NGQ=∠NPO,GQ=PO
∵,
∴PO=PB
∴∠POE=∠PBE=45°
∴∠NPO=90°
∴∠NGQ=90°
∴∠QGR=45°.
在和中
∴.
∴QR=OE
在和中
∴
∴QM=OM.
∵NQ=NO,
∴NM⊥OQ
∵
∴等腰
∴
∵
∴
在和中
∴
∴NS=EM=4,MS=OE=2
∴N(-6,2).
【点睛】
本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.
5、见解析
【分析】
由垂直可得,根据相似三角形的判定定理直接证明即可.
【详解】
证明:∵,
∴,
在和中,
∵,
∴.
【点睛】
题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
【历年真题】2022年贵州省铜仁市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解): 这是一份【历年真题】2022年贵州省铜仁市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了已知点D,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
【历年真题】2022年中考数学模拟定向训练 B卷(含答案解析): 这是一份【历年真题】2022年中考数学模拟定向训练 B卷(含答案解析),共21页。试卷主要包含了下列说法中正确的个数是,已知,,,则,有下列四种说法等内容,欢迎下载使用。
【历年真题】2022年河北唐山遵化市中考数学模拟定向训练 B卷(含答案解析): 这是一份【历年真题】2022年河北唐山遵化市中考数学模拟定向训练 B卷(含答案解析),共28页。试卷主要包含了已知等腰三角形的两边长满足+,若分式的值为0,则x的值是等内容,欢迎下载使用。