![知识点详解京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项测评练习题第1页](http://img-preview.51jiaoxi.com/2/3/12675946/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![知识点详解京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项测评练习题第2页](http://img-preview.51jiaoxi.com/2/3/12675946/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![知识点详解京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项测评练习题第3页](http://img-preview.51jiaoxi.com/2/3/12675946/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂检测题
展开
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂检测题,共21页。试卷主要包含了若不等式,若a<b,则下列式子正确的是,下列选项正确的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A.若a<b,则3a<2b B.若a>b,则ac2>bc2C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b2、如图,数轴上表示的解集是( )A.﹣3<x≤2 B.﹣3≤x<2 C.x>﹣3 D.x≤23、下列不等式组,无解的是( )A. B. C. D.4、若不等式(a+1)x>2的解集为x<,则a的取值范围是( )A.a<1 B.a<-1 C.a>1 D.a>-15、若关于x的分式方程+1=有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是( )A.0 B.24 C.﹣72 D.126、若a<b,则下列式子正确的是( )A.> B.﹣3a<﹣3b C.3a>3b D.a﹣3<b﹣37、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<08、如果,m,这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是( )A. B. C. D.9、下列选项正确的是( )A.不是负数,表示为B.不大于3,表示为C.与4的差是负数,表示为D.不等于,表示为10、把不等式的解集在数轴上表示正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)2、不等式组的解集为_______.3、不等式组的解集为_______.4、不等式组的解集是______.5、a、b、c表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)______;(2)________0;(3)__________;(4)________;(5)________;(6)_______;(7)________;(8)_______.三、解答题(5小题,每小题10分,共计50分)1、解不等式(组): (1) ; (2)2、解下列一元一次不等式组:(1);(2).3、根据要求解不等式或答题(1);(2)若关于的不等式组有四个整数解,则的取值范围是?(3);(4).4、我市某生态果园今年收获了吨李子和吨桃子,要租用甲、乙两种货车共辆,及时运往外地,甲种货车可装李子吨和桃子吨,乙种货车可装李子吨和桃子吨.(1)共有几种租车方案?(2)若甲种货车每辆需付运费元,乙种货车每辆需付运费元,请选出最佳方案,此方案运费是多少.5、用等号或不等号填空:(1)比较2x与x2+1的大小:当x=2时,2x x2+1当x=1时,2x x2+1当x=﹣1时,2x x2+1(2)任选取几个x的值,计算并比较2x与x2+1的大小; ---------参考答案-----------一、单选题1、D【解析】【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意; B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意; C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意; D、若ac2<bc2,则a<b,故本选项正确,符合题意; 故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.2、A【解析】【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.3、D【解析】【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、,解得,解集为:,故不符合题意;B、,解得,解集为:,故不符合题意;C、,解得,解集为:,故不符合题意;D、,解得,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.4、B【解析】【分析】根据不等式的性质可得,由此求出的取值范围.【详解】解:不等式的解集为,不等式两边同时除以时不等号的方向改变,,,故选:B.【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变.5、D【解析】【分析】根据分式方程的解为正数即可得出a=﹣1或﹣3或﹣4或2或﹣6,根据不等式组有解,即可得出﹣1+≤y<,找出﹣3<﹣1+≤﹣2中所有的整数,将其相乘即可得出结论.【详解】先解分式方程,再解一元一次不等式组,进而确定a的取值.解:∵+1=,∴x+x﹣2=2﹣ax.∴2x+ax=2+2.∴(2+a)x=4.∴x= .∵关于x的分式方程+1=有整数解,∴2+a=±1或±2或±4且≠2.∴a=﹣1或﹣3或﹣4或2或﹣6.∵2(y﹣1)+a﹣1≤5y,∴2y﹣2+a﹣1≤5y.∴2y﹣5y≤1﹣a+2.∴﹣3y≤3﹣a.∴y≥﹣1+.∵2y+1<0,∴2y<﹣1.∴y<.∴﹣1+≤y<.∵关于y的不等式组恰有2个整数解,∴﹣3<﹣1+≤﹣2.∴﹣6<a≤﹣3.又∵a=﹣1或﹣3或﹣4或2或﹣6,∴a=﹣3或﹣4.∴所有满足条件的整数a的值之积是﹣3×(﹣4)=12.故选:D.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出﹣3<﹣1+≤﹣2是解题的关键.6、D【解析】【分析】根据不等式的基本性质判断即可.【详解】解:A选项,∵a<b,∴,故该选项不符合题意;B选项,∵a<b,∴﹣3a>﹣3b,故该选项不符合题意;C选项,∵a<b,∴3a<3b,故该选项不符合题意;D选项,∵a<b,∴a﹣3<b﹣3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.7、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.8、C【解析】【分析】如果2m,m,这三个实数在数轴上所对应的点从左到右依次排列,则可得三个数的大小关系,列出相应的不等式组进行求解,然后根据确定不等式组解集方法(同大取大,同小取小),即可解得m的范围.【详解】解:根据题意得:,解①得:,解②得:,解③得:,∴m的取值范围是.故选:C.【点睛】题目主要考查不等式组的应用及解法,理解题意,列出相应的不等式组,熟练掌握确定不等式组解集的方法是解题关键.9、C【解析】【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:.不是负数,可表示成,故本选项不符合题意;.不大于3,可表示成,故本选项不符合题意;.与4的差是负数,可表示成,故本选项符合题意;.不等于,表示为,故本选项不符合题意;故选:C.【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.10、D【解析】【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式的解集为,在数轴上的表示如下:故选:D.【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.二、填空题1、<【解析】【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.2、【解析】【分析】根据解一元一次不等组的方法“一般先求出其中各不等式的解集,再求出这些解集的公共部分”即可得.【详解】解:解不等式①,得,解不等式②,得,即不等式组的解集为:,故答案为:.【点睛】本题考查了解一元一次不等式组,解题的关键是掌握解一元一次不等式组的方法.3、【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由,得:,由,得:,∴不等式组的解集为.故填:.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.4、【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:,由①可得:,由②可得:,∴原不等式组的解集为;故答案为.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.5、 > > > < < > > >【解析】【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变;(2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变;(3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变.据此可以对不等号的方向进行判断.【详解】解:由数轴的定义得:a>0,b>0,c<0,a>b>c ,(1)不等式a>b的两边同加上3,不改变不等号的方向,则>;(2)不等式a>b的两边同减去b,不改变不等号的方向,则a-b>b-b,即a-b>0;(3)不等式a>b的两边同乘以,不改变不等号的方向,则>;(4)不等式a>b的两边同乘以-2,改变不等号的方向,则<;(5)不等式a>b的两边同乘以-4,改变不等号的方向,则-4a<-4b;不等式-4a<-4b的两边同加上1,不改变不等号的方向,则<;(6)不等式a>b的两边同乘以正数,不改变不等号的方向,则 > ;(7)不等式a>b的两边同减去c,不改变不等号的方向,则>;(8)不等式a>b的两边同乘以正数b,不改变不等号的方向,则>.【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.三、解答题1、(1)x>1.5;(2)-1≤x<3【解析】【分析】(1)根据移项、合并同类项、系数化为1的步骤可得x的范围;(2)首先求出两个不等式的解集,然后取其公共部分即为不等式组的解集.【详解】(1)解:5x-2>3x+1,移项得:5x-3x>1+2,合并同类项得:2x>3,系数化为1得:x>1.5;(2)解: 解不等式2x+5≤3(x+2),得x≥-1, 解不等式2x-<1,得x<3, ∴不等式组的解集为-1≤x<3.【点睛】此题考查了解一元一次不等式,解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式,解一元一次不等式组的方法.2、(1)-3≤x<2(2)<x≤【解析】【分析】(1)分别求出各不等式的解集,再求出其公共解集即可.(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】(1)解解不等式①得x≥-3;解不等式②得x<2;∴不等式组的解集为-3≤x<2;(2)解.解不等式①得x>;解不等式②得x≤;∴不等式组的解集为<x≤.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.3、(1)-1≤x<;(2)≤a<;(3)当m>2时,x>;当m<2时,x<;(4)1<x<4.【解析】【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先解每一个不等式,根据范围内有四个整数解,确定a的取值范围;(3)利用不等式的解法分别从m>2和m<2分别求解即可;(4)根据绝对值的性质分别从x<-1,-1≤x≤0,0<x≤2与x>2四种情况分别化简不等式,再利用不等式的解法分别求解,即可得出原不等式的解集.【详解】解:(1)解不等式①得x≥-1,解不等式②得x<,∴不等式组的解集为-1≤x<.(2)由不等式①,得2x-3x<-9+1,解得x>8,由不等式②,得3x+2>4x+4a,解得x<2-4a,∵不等式组有四个整数解,即:9,10,11,12,∴12<2-4a≤13,解得≤a<;(3),移项,得,合并同类项,得,当m>2时,x>;当m<2时,x<;(4),当x<-1时,原绝对值不等式可化为,解得x>4,与x<-1矛盾,故此不等式无解;当-1≤x≤0时,原绝对值不等式可化为,解得x>与-1≤x≤0矛盾,故此不等式无解;当0<x≤2时,原绝对值不等式可化为,解得x>1,则1<x≤2;当x>2,原绝对值不等式可化为,解得x<4,则2<x<4,故原不等式的解集为1<x<4.【点睛】本题考查了一元一次不等式与不等式组的解法及整数解的确定,熟练掌握一元一次不等式的解法及不等式组的解集的确定方法是解题的关键.4、(1)共有三种方案;(2)租甲,乙两种货车各3辆的方案最佳,运费是5100元.【解析】【分析】(1)本题的不等式关系为:甲车装的李子的重量+乙车装的李子的重量≥15,甲车装的桃子的重量+乙车装的桃子的重量≥8,可根据此不等式关系得出不等式组,求出自变量的取值范围,然后得出符合条件的自变量的值.(2)根据(1)得出的租车方案,然后分别比较出各种方案的总费用,判定出最佳的方案.【详解】解:(1)设安排甲种货车x辆,乙种货车(6-x)辆,根据题意,得:,解得:,∴3≤x≤5.x取整数有:3,4,5,共有三种方案.(2)租车方案及其运费计算如下表.方案甲种车乙种车运费(元)一331000×3+700×3=5100二421000×4+700×2=5400三511000×5+700×1=5700 答:共有三种租车方案,其中第一种方案最佳,运费是5100元.【点睛】本题考查了一元一次不等式组的应用,解题的关键是读懂题意,找到关键描述语,根据:水果的重量≤汽车的运载量列不等式解答.5、(1)<,=,<;(2)当x=3时,2x<x2+1,当x=﹣2时,2x<x2+1【解析】【分析】(1)将x的值代入不等号两边的代数式中,比较大小即可得;(2)任选两个值,按照(1)中方法代入求值,然后比较大小即可得.【详解】解:(1)比较2x与的大小:当时,,,∴;当时,,,∴;当时,,,∴;故答案为:,,;(2)当时,,,∴;当时,,,∴.【点睛】题目主要考查不等式的性质,熟练掌握不等式的性质是解题关键.
相关试卷
这是一份北京课改版第七章 观察、猜想与证明综合与测试复习练习题,共21页。试卷主要包含了若的补角是125°,则的余角是,下列命题,下列命题是假命题的有,下列语句中,是命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试达标测试,共15页。试卷主要包含了下列运算正确的是,下列结论中,正确的是,下列各式中,计算结果为的是,下列数字的排列,单项式的系数和次数分别是,多项式+1的次数是等内容,欢迎下载使用。
这是一份初中北京课改版第六章 整式的运算综合与测试课时训练,共17页。试卷主要包含了下列运算中,正确的是,把多项式按的降幂排列,正确的是,多项式+1的次数是,已知,下列运算中正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)