【历年真题】2022年河南省郑州市中考数学一模试题(含答案详解)
展开2022年河南省郑州市中考数学一模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是的外接圆,,则的度数是( )
A. B. C. D.
2、下列各数中,是无理数的是( )
A.0 B. C. D.3.1415926
3、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
4、若方程有实数根,则实数a的取值范围是( )
A. B.
C.且 D.且
5、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.
A. B. C. D.
6、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
7、的值( ).
A. B.2022 C. D.-2022
8、如图,中,,,AD平分交BC于点D,点E为AC的中点,连接DE,则的面积是( )
A.20 B.16 C.12 D.10
9、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
10、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).
分数 | 25 | 26 | 27 | 28 | 29 | 30 |
人数 | 3 | 5 | 10 | 14 | 12 | 6 |
A.该组数据的众数是28分 B.该组数据的平均数是28分
C.该组数据的中位数是28分 D.超过一半的同学体育测试成绩在平均水平以上
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知的三个角,,,,将绕点顺时针旋转得到,如果,那么_______.
2、如图,点在直线上,射线平分.若,则等于___.
3、如图,在▱ABCD中,AB=8,AD=6,E为AD延长线上一点,且DE=4,连接BE,BE交CD于点F,则CF=_____.
4、在工地一边的靠墙处,用120米长的铁栅栏围一个占地面积为2000平方米的长方形临时仓库,铁栅栏只围三边,设垂直于墙的一边长为x米.根据题意,建立关于x的方程是 ___.
5、如图,,,,,,则_______.
三、解答题(5小题,每小题10分,共计50分)
1、小明根据学习函数的经验,对函数y=﹣|x|+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题.
(1)如表y与x的几组对应值:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -1 | 0 | 1 | 2 | 3 | 2 | 1 | a | -1 | … |
①a= ;
②若A(b,﹣7)为该函数图象上的点,则b= ;
(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:
①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;
②求出函数图象与坐标轴在第二象限内所围成的图形的面积.
2、先化简,再求值:,其中,.
3、已知二次函数的图象经过两点.
(1)求a和b的值;
(2)在坐标系中画出该二次函数的图象.
4、已知如图,等腰△ABC中,AB=AC,∠BAC=α(α>),F为BC中点,D为BC延长线上一点,以点A为中心,将线段AD逆时针旋转α得到线段AE,连接CE,DE.
(1)补全图形并比较∠BAD和∠CAE的大小;
(2)用等式表示CE,CD,BF之间的关系,并证明;
(3)过F作AC的垂线,并延长交DE于点H,求EH和DH之间的数量关系,并证明.
5、列方程或方程组解应用题:
某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.
-参考答案-
一、单选题
1、C
【分析】
在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.
【详解】
解:在中,,
;
,,
;
又,
,
故选:.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.
2、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
3、C
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
4、B
【分析】
若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.
【详解】
解:若方程为一元二次方程,则有,
解得且
若,方程为一元一次方程,有实数根
故选B.
【点睛】
本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.
5、B
【分析】
由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.
【详解】
解:由题意可得:跳动个单位长度到
从到再跳动个单位长度,
归纳可得:
结合
所以点从跳动到达跳动了:
个单位长度.
故选B
【点睛】
本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.
6、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
7、B
【分析】
数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.
【详解】
解:
故选B
【点睛】
本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.
8、D
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;
【详解】
解:∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,,
∴,
∴,
∵点E为AC的中点,
∴,
故选:D
【点睛】
本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
9、B
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
10、B
【分析】
由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C, 从而可得答案.
【详解】
解:由分出现次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;
该组数据的平均数是
故B符合题意;
50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,
所以中位数为:(分),故C不符合题意;
因为超过平均数的同学有:
所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;
故选B
【点睛】
本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.
二、填空题
1、度
【分析】
根据求出,即可求出旋转角的度数.
【详解】
解:绕点顺时针旋转得到,
则,
,
故答案为:.
【点睛】
本题考查了旋转的性质,解题关键是明确旋转角度为的度数.
2、
【分析】
首先根据角平分线定义可得∠BOD=2∠BOC,再根据邻补角的性质可得∠AOD的度数.
【详解】
∵射线OC平分∠DOB.
∴∠BOD=2∠BOC,
∵,
∴,
∴∠AOD=180°,
故答案为:.
【点睛】
此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.需要注意角度度分秒的计算.
3、
【分析】
根据平行四边形的性质可知,即可证明,推出,由此即可求出CF的长.
【详解】
∵四边形ABCD是平行四边形,
∴,即,
∴,,
∴,
∴.
∵,
∴.
∵
∴,
∴.
故答案为:.
【点睛】
本题考查平行四边形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解答本题的关键.
4、
【分析】
设垂直于墙的一边长为x米,根据题意用x表示平行于墙的一边长,再根据面积公式列出方程即可.
【详解】
解:设垂直于墙的一边长为x米,则平行于墙的一边长为(120-2x)米,根据题意得,
故答案为:
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.
5、17
【分析】
由“”可证,可得,,即可求解.
【详解】
解:,
,
在和中,
,
,
,,
,
故答案为:17.
【点睛】
本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.
三、解答题
1、
(1)①0;②±10;
(2)见解析;①最大值,3;②
【分析】
(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;
(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.
(1)
解:①由表可知,该函数图象关于y轴对称,
∵当x=-3时,y=0,
∴当x=3时,a=0,
故答案为:0;
②将A(b,-7)代入y=﹣|x|+3中,得:-7 =﹣|b|+3,即|b|=10,
解得:b=±10,
故答案为:±10;
(2)
解:函数y=﹣|x|+3的图象如图所示:
①由图象可知,该函数有最大值,最大值是3,
故答案为:最大值,3;
②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为.
【点睛】
本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键.
2、ab,1
【分析】
根据分式的减法和除法可以化简题目中的式子,然后将a,b的值代入化简后的式子即可解答本题.
【详解】
解:
;
当,时,原式=
【点睛】
本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.
3、
(1)
(2)见解析
【分析】
(1)利用待定系数法将两点代入抛物线求解即可得;
(2)根据(1)中结论确定函数解析式,求出与x,y轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象.
(1)
解:∵二次函数的图象经过两点,
∴,
解得: .
(2)
解:由(1)可得:函数解析式为:,
当时,,
解得:,,
∴抛物线与x轴的交点坐标为:,,
抛物线与y轴的交点坐标为:,
对称轴为:,
根据这些点及对称轴在直角坐标系中作图如下.
【点睛】
题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键.
4、
(1)补全图形见解析,;
(2);
(3),理由见解析.
【分析】
(1)根据题意补全图形即可,再根据旋转的性质可知,即,即得出;
(2)由旋转可知,即可利用“SAS”证明,得出.再由点F为BC中点,即可得出.
(3)连接AF,作,由等腰三角形“三线合一”可知,.即得出,说明A、F、D、N四点共圆.再根据圆周角定理可知.再次利用等腰三角形“三线合一”的性质可知,.即得出.再由,即可说明 点H与点N重合,即得出结论.
(1)
如图,即为补全的图形,
根据题意可知,
∴,即.
(2)
由旋转可知,
∴在和中,
∴,
∴.
∵,
∴.
∵点F为BC中点,
∴,
∴,即.
(3)
如图,连接AF,作,
∵AB=AC,F为BC中点,
∴,.
根据作图可知,
∴,
∴A、F、D、N四点共圆,
∴.
∵,,
∴,.
∴.
∵,且点H在线段DE上,
∴点H与点N重合,
∴.
【点睛】
本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,四点共圆,圆周角定理等知识,较难.利用数形结合的思想是解答本题的关键.
5、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元
【分析】
设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.
【详解】
设垃圾桶的单价是元,垃圾桶的单价是元,
依题意得:,
解得:.
即垃圾桶的单价是20元,垃圾桶的单价是100元.
【点睛】
本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.
【历年真题】中考数学一模试题(含答案及详解): 这是一份【历年真题】中考数学一模试题(含答案及详解),共24页。试卷主要包含了已知等腰三角形的两边长满足+,有下列四种说法,下列说法中正确的个数是等内容,欢迎下载使用。
【历年真题】2022年河北省唐山市中考数学一模试题(含答案及详解): 这是一份【历年真题】2022年河北省唐山市中考数学一模试题(含答案及详解),共23页。
【历年真题】安徽省宿州市中考数学一模试题(含答案及详解): 这是一份【历年真题】安徽省宿州市中考数学一模试题(含答案及详解),共22页。试卷主要包含了下列式子运算结果为2a的是.等内容,欢迎下载使用。