北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题
展开
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共18页。
七年级数学下册第四章一元一次不等式和一元一次不等式组专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A.若a<b,则3a<2b B.若a>b,则ac2>bc2C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b2、下列不等式一定成立的是( )A. B. C. D.3、不等式组的解是x>a,则a的取值范围是( )A.a<3 B.a=3 C.a>3 D.a≥34、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A.24人 B.23人 C.22人 D.不能确定5、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )A. B. C. D.6、某种商品进价为20元,标价为30元出售,商场规定可以打折销售,但其利润率不能少于5%,这种商品最多可以按几折销售?设这种商品打x折销售,则下列符合题意的不等式是( )A.30x﹣20≥20×5% B.30x﹣20≤20×5%C.30×﹣20≥20×5% D.30×﹣20≤20×5%7、整数a使得关于x的不等式组至少有4个整数解,且关于y的方程1﹣3(y﹣2)=a有非负整数解,则满足条件的整数a的个数是( )A.6个 B.5个 C.3个 D.2个8、已知关于的不等式的解集为,则的取值范围是( )A. B. C. D.9、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折.A.9 B.8 C.7 D.610、下列变形中,错误的是( )A.若3a+5>2,则3a>2-5 B.若,则C.若,则x>﹣5 D.若,则第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果a<2,那么不等式组的解集为_______,的解集为_______.2、某种药品的说明书上贴有如图所示的标签,则一次服用这种药品的最大剂量是______.3、根据“3x与5的和是负数”可列出不等式 _________.4、 “x的3倍减去的差是一个非负数”,用不等式表示为_____________.5、不等式组的解集为_______.三、解答题(5小题,每小题10分,共计50分)1、在“垃圾分类,你我有责”主题活动策划中,我校准备更新一批垃圾桶.已知类桶单价为25元,类桶单价为45元,购买两类垃圾桶共个,设购入类桶个.(1)当时,①请补全以下表格. 类桶 类桶数量 (个) ( )费用 (元) ( ) ②若总费用不超过1500元,问至少需要购买几个类垃圾桶?(2)若类桶不少于70个,总费用恰好为1980元,请直接写出 .2、为奖励在文艺汇演中表现突出的同学,班主任派小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?3、解下列不等式(1)2x>3﹣x;(2)2(x+4)>3(x﹣1).4、关于x、y的方程组的解满足,.求a的取值范围.5、解不等式组:,并求出所有整数解的和. ---------参考答案-----------一、单选题1、D【解析】【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意; B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意; C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意; D、若ac2<bc2,则a<b,故本选项正确,符合题意; 故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.2、B【解析】【分析】根据不等式的性质依次判断即可.【详解】解:A.当y≤0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x≤0时不成立,故该选项不符合题意;D. 当m≤0时不成立,故该选项不符合题意;故选:B.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.3、D【解析】【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组的解是x>a,∴,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.4、C【解析】【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.【详解】解:设每组预定的学生数为x人,由题意得,解得是正整数故选:C.【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.5、C【解析】【分析】先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论.【详解】解:,解不等式得,解不等式得,,因为不等式组有解,故解集为:,因为不等式组有不超过3个整数解,所以,,把代入,,解得,故选:C.【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.6、C【解析】【分析】根据题意易得这种商品的利润为30×﹣20,然后根据“其利润率不能少于5%”可列出不等式.【详解】解:设这种商品打x折销售,由题意得:30×﹣20≥20×5%;故选C.【点睛】本题主要考查一元一次不等式的应用,解题的关键是熟练掌握销售中的利润问题.7、A【解析】【分析】解不等式组中两个不等式得出,结合其整数解的情况可得,再解方程得,由其解为非负数得出,最后根据方程的解必须为非负整数可得的取值情况.【详解】解:解不等式,得:,解不等式,得:,不等式组至少有4个整数解,,解得,解关于的方程得,方程有非负整数解,,则,所以,其中能使为非负整数的有2,3,4,5,6,7,共6个,故选:A.【点睛】本题主要考查一元一次不等式组的整数解,解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.8、C【解析】【分析】由题意直接根据已知解集得到,即可确定出的范围.【详解】解:不等式的解集为,,解得:.故选:C.【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.9、C【解析】【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】设打x折,根据题意得:1100×﹣700≥700×10%,解得:x≥7,∴至多可以打7折故选:C.【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.10、B【解析】【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A、不等式的两边都减5,不等号的方向不变,故A不符合题意;B、不等式的两边都乘以,不等号的方向改变得到,故B符合题意;C、不等式的两边都乘以(﹣5),不等号的方向改变,故C不符合题意;D、不等式的两边都乘以同一个正数,不等号的方向不变,故D不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.二、填空题1、 x>2 无解【解析】【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】∵a<2,∴不等式组的解集为x>2;不等式组中x不存在,方程组无解;故答案是:x>2;无解.【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键.2、30【解析】【分析】根据30≤2次服用的剂量≤60,30≤3次服用的剂量≤60,列出两个不等式组,求出解集,再求出解集的公共部分即可.【详解】设一次服用的剂量为xmg,根据题意得:30≤2x≤60或30≤3x≤60,解得:15≤x≤30或10≤x≤20.则一次服用这种药品的剂量范围是:10~30mg.故答案为30.【点睛】本题考查了一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.3、【解析】【分析】3x与5的和为,和是负数即和小于0,列出不等式即可得出答案.【详解】3x与5的和是负数表示为.故答案为:.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、【解析】【分析】根据题中的不等量关系列出不等式即可.【详解】解:根据题意列不等式为:,故答案为:.【点睛】本题考查了一元一次不等式的应用,解题的关键是根据题中所给的不等量关系列出一元一次不等式.5、【解析】【分析】根据解一元一次不等组的方法“一般先求出其中各不等式的解集,再求出这些解集的公共部分”即可得.【详解】解:解不等式①,得,解不等式②,得,即不等式组的解集为:,故答案为:.【点睛】本题考查了解一元一次不等式组,解题的关键是掌握解一元一次不等式组的方法.三、解答题1、(1)①40-x,1800-45x;②15;(2)76【解析】【分析】(1)①根据总数减去A的数量得到B的数量,再根据单价乘以数量求费用填空即可;②根据题意列不等式解答;(2)根据题意列方程,解得,根据,得到,由且n为4的倍数,n为正整数,求出答案.【详解】解:(1)① 类桶 类桶数量 (个) ( 40-x )费用 (元) ( 1800-45x ) 故答案为:40-x,1800-45x;②由题意得: ,解得,∵x为正整数,∴至少需要购买15个A类垃圾桶;(2)由题意得:,解得,∵,∴,且n为4的倍数, 解得,∵n为正整数,,∴n=76,故答案为:76.【点睛】此题考查列一元一次不等式解决实际问题,正确理解题意得到不等式关系是解题的关键.2、(1)设每个笔记本3元,每支钢笔5元;(2)有三种购买方案:①购买笔记本10个,则购买钢笔14个;②购买笔记本11个,则购买钢笔13个;③购买笔记本12个,则购买钢笔12个.【解析】【分析】(1)每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可;(2)设购买笔记本m个,则购买钢笔(24-m)个利用总费用不超过100元和钢笔数不少于笔记本数列出不等式组求得m的取值范围后即可确定方案.【详解】解:(1)设每个笔记本x元,每支钢笔y元依题意得:解得:答:设每个笔记本3元,每支钢笔5元.(2)设购买笔记本m个,则购买钢笔(24-m)个依题意得:解得:12≥m≥10∵m取正整数∴m=10或11或12∴有三种购买方案:①购买笔记本10个,则购买钢笔14个.②购买笔记本11个,则购买钢笔13个.③购买笔记本12个,则购买钢笔12个.【点睛】本题考查了一元一次不等式组的应用及二元一次方程组的应用,解题的关键是仔细的分析题意并找到等量关系列方程或不等关系列不等式.3、(1)x>1;(2)x<11【解析】【分析】(1)根据解一元一次不等式基本步骤:、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)移项,得:2x+x>3,合并同类项,得:3x>3,系数化为1,得:x>1;(2)去括号,得:2x+8>3x﹣3,移项,得:2x﹣3x>﹣3﹣8,合并同类项,得:﹣x>﹣11,系数化为1,得:x<11.【点睛】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键.4、【解析】【分析】解关于x、y的方程组,根据,得到关于a的不等式组,求解可得.【详解】①+②得解得①-②得解得,解不等式,解得解不等式,解得a的取值范围为【点睛】本题主要考查解方程组和不等式组,根据题意得出关于a的不等式组是解题的关键.5、;【解析】【分析】首先解每个不等式,得出不等式组的解集,然后确定解集中的整数解求和即可.【详解】解:,解不等式①得:,解不等式②得:,则不等式组的解集为:,∴不等式组的整数解为:,∴,故所有整数解的和为.【点睛】本题考查了求一元一次不等式组的整数解,能够准确求出不等式组的解集是解本题的关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试同步训练题,共17页。试卷主要包含了下列式子,下列运算不正确的是,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后作业题,共17页。试卷主要包含了把分解因式的结果是.,下列运算错误的是,若x2+ax+9=等内容,欢迎下载使用。
这是一份数学七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共18页。试卷主要包含了若,则下列不等式不一定成立的是,若成立,则下列不等式不成立的是,关于x的方程3﹣2x=3,下列式子等内容,欢迎下载使用。