【历年真题】2022年广东省清远市中考数学三年真题模拟 卷(Ⅱ)(含详解)
展开
这是一份【历年真题】2022年广东省清远市中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
2022年广东省清远市中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.3、已知点D、E分别在的边AB、AC的反向延长线上,且ED∥BC,如果AD:DB=1:4,ED=2,那么BC的长是( )A.8 B.10 C.6 D.44、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).分数252627282930人数351014126A.该组数据的众数是28分 B.该组数据的平均数是28分C.该组数据的中位数是28分 D.超过一半的同学体育测试成绩在平均水平以上5、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.A. B. C. D.6、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A.雷 B.锋 C.精 D.神7、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).A.7 B.6 C.5 D.48、如图,中,,,AD平分交BC于点D,点E为AC的中点,连接DE,则的面积是( )A.20 B.16 C.12 D.109、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )A. B. C. D.10、如图,在的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.点E是格点四边形ABCD的AB边上一动点,连接ED,EC,若格点与相似,则的长为( )A. B. C.或 D.或第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在⊙O中,圆心角∠AOC=120°,则⊙O内接四边形ABCD的内角∠ABC=_____.2、如图,已知它们分别交直线于点和点,如果,,那么线段的长是_________3、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.4、已知抛物线y=(x﹣1)2有点A(0,y1)和B(3,y2),则y1___y2.(用“>”,“<”,“=”填写)5、写出一个比1大且比2小的无理数______.三、解答题(5小题,每小题10分,共计50分)1、如图,在中(),,边上的中线把的周长分成和两部分,求和的长.2、已知在平面直角坐标系中,拋物线与轴交于点和点,与轴交于点 ,点是该抛物线在第一象限内一点,联结与线段相交于点.(1)求抛物线的表达式;(2)设抛物线的对称轴与线段交于点,如果点与点重合,求点的坐标;(3)过点作轴,垂足为点与线段交于点,如果,求线段的长度.3、如图,AC,BD相交于的点O,且∠ABO=∠C.求证:△AOB∽△DOC.4、如图,直线AB、CD相交于点O,若,OA平分∠COE,求∠DOE的度数.5、在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)在点E(0,0),F(2,5),G(-1,-1),H(-3,5)中, 的“关联点”在函数y=2x+1的图象上;(2)如果一次函数y=x+3图象上点M的“关联点”是N(m,2),求点M的坐标;(3)如果点P在函数y=-x2+4(-2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是-4<y′≤4,求实数a的取值范围. -参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、既是轴对称图形,又是中心对称图形,故正确;D、既不是轴对称图形,也不是中心对称图形,故错误.故选:C.【点睛】本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.2、A【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.3、C【分析】由平行线的性质和相似三角形的判定证明△ABC∽△ADE,再利用相似三角形的性质和求解即可.【详解】解:∵ED∥BC,∴∠ABC=∠ADE,∠ACB=∠AED,∴△ABC∽△ADE,∴BC:ED= AB:AD,∵AD:DB=1:4,∴AB:AD=3:1,又ED=2,∴BC:2=3:1,∴BC=6,故选:C【点睛】本题考查平行线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答的关键.4、B【分析】由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C, 从而可得答案.【详解】解:由分出现次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;该组数据的平均数是 故B符合题意;50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,所以中位数为:(分),故C不符合题意;因为超过平均数的同学有: 所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;故选B【点睛】本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.5、B【分析】由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.【详解】解:由题意可得:跳动个单位长度到 从到再跳动个单位长度, 归纳可得:结合所以点从跳动到达跳动了: 个单位长度.故选B【点睛】本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.6、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D.【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.7、A【分析】由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.【详解】由折叠的性质得,,∴,,∴,∵,∴,∴,在与中,,∴,∴,,设,则,∴,解得:,∴,,∴.故选:A.【点睛】本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.8、D【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;【详解】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,,∴,∴,∵点E为AC的中点,∴,故选:D【点睛】本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.9、C【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10、C【分析】分∽和∽两种情况讨论,求得AE和BE的长度,根据勾股定理可求得DE和EC的长度,由此可得的长.【详解】解:由图可知DA=3,AB=8,BC=4,AE=8-EB,∠A=∠B=90°,若∽,则,即,解得或,当时,,,,当时,,,,若∽,则,即,解得(不符合题意,舍去),故或,故选:C.【点睛】本题考查相似三角形的性质和判定,勾股定理,能结合图形,分类讨论是解题关键.注意不要忽略了题干中格点三角形的定义.二、填空题1、120°【分析】先根据圆周角定理求出∠D,然后根据圆内接四边形的性质求解即可.【详解】解:∵∠AOC=120°∴∠D=∠AOC=60°∵⊙O内接四边形ABCD∴∠ABC=180°-∠D=120°.故答案是120°.【点睛】本题主要考查了圆周角定理、圆内接四边形的性质等知识点,掌握圆内接四边形的性质是解答本题的关键.2、8【分析】根据平行线分线段成比例定理即可得.【详解】解:,,,,,解得,故答案为:8.【点睛】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题关键.3、30【分析】根据科学计算器的使用计算.【详解】解:依题意得:[3×(﹣2)3-1]÷(-)=30,故答案为30.【点睛】利用科学计算器的使用规则把有理数混合运算,再计算.4、<【分析】分别把A、B点的横坐标代入抛物线解析式求解即可.【详解】解:x=0时,y1=(0﹣1)2=1,x=3时,y3=(3﹣1)2=4,∴y1<y2.故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,求出相应的函数值是解题的关键.5、故答案为: 【点睛】本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序.3.答案不唯一,如、等【分析】根据无理数的大小比较和无理数的定义写出范围内的一个数即可.【详解】解:一个比1大且比2小的无理数有,等,故答案为:答案不唯一,如、等.【点睛】本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一.三、解答题1、,【分析】由题意可得,,由中线的性质得,故可求得,即可求得.【详解】由题意知,,∵,D为BC中点∴∴即则BC=24,CD=BD=12则且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.2、(1)(2)(3)【分析】(1)将点和点代入,即可求解;(2)分别求出和直线的解析式为,可得,,再求直线的解析式为,联立,即可求点;(3)设,则,则,用待定系数法求出直线的解析式为,联立,可求出,,直线与轴交点,则,再由,可得,则有方程,求出,即可求.(1)解:将点和点代入,,,;(2)解:,对称轴为直线,令,则,解得或,,设直线的解析式为,,,,,,设直线的解析式为,,,,联立,或(舍,;(3)解:设,则,,设直线的解析式为,,,,联立,,,,直线与轴交点,,,,轴,,,,,,,,.【点睛】本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键.3、见解析【分析】利用对顶角相等得到∠AOB=∠COD,再结合已知条件及相似三角形的判定定理即可求解.【详解】证明:∵AC,BD相交于的点O,∴∠AOB=∠DOC,又∵∠ABO=∠C,∴△AOB∽△DOC.【点睛】本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解.4、100°【分析】根据对顶角的性质,可得∠AOC与∠DOB的关系,根据角平分线的性质,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.【详解】解:由对顶角相等得∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠COE=2∠AOC=80°,由邻补角的性质得∠DOE=180°-∠COE=180°-80°=100°.【点睛】本题考查了对顶角、邻补角,对顶角相等,邻补角互补,熟练掌握对顶角的性质和角平分线的定义是解答本题的关键.5、(1)F、H(2)点M(-5,-2)(3)【分析】(1)点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,看是否在函数图象上,即可求解;(2)当m≥0时,点M(m,2),则2=m+3;当m<0时,点M(m,-2),则﹣2=m+3,解方程即可求解;(3)如图为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束.都符合要求-4<y'≤4,只要求出关键点即可求解.(1)解:由题意新定义知:点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,得到:F(2,5)和H(-3,-5)在函数y=2x+1图象上;(2)解:当m≥0时,点M(m,2),则2=m+3,解得:m=-1(舍去);当m<0时,点M(m,-2),-2=m+3,解得:m=-5,∴点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束,都符合要求,∴-4=-a2+4,解得:(舍去负值),观察图象可知满足条件的a的取值范围为:.【点睛】本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键.
相关试卷
这是一份【真题汇编】2022年广东省清远市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解),共25页。
这是一份【历年真题】2022年广东省清远市中考数学真题汇总 卷(Ⅱ)(含详解),共24页。试卷主要包含了如图所示,,,,,则等于,下列计算错误的是,的值.等内容,欢迎下载使用。
这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。