【历年真题】2022年广东省深圳市罗湖区中考数学模拟真题练习 卷(Ⅱ)(含答案详解)
展开2022年广东省深圳市罗湖区中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是的外接圆,,则的度数是( )
A. B. C. D.
2、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
3、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
4、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
5、如图,表示绝对值相等的数的两个点是( )
A.点C与点B B.点C与点D C.点A与点B D.点A与点D
6、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
7、某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为( )
A. B.
C. D.
8、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )
A. B. C. D.
9、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
10、等腰三角形的一个内角是,则它的一个底角的度数是( )
A. B.
C.或 D.或
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知3m=a,3n=b,则33m+2n的结果是____.
2、有理数,,在数轴上表示的点如图所示,化简__________.
3、如图,直线,如果,,,那么线段BE的长是_____________.
4、如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
5、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.
三、解答题(5小题,每小题10分,共计50分)
1、一位同学在阅读课外书的时候,学到了一种速算方法,也让我们一起来看看吧!,他发现这样的数对一共有50对,且每一对数和都101,所以原式;同样地,
+…+),这样的数对一共有25对,且每一对数和都是102,所以原式;
(1)请仔细观察以上算式的特点及运算规律,请你运用你的发现看看下列式子哪些具有上述特点,能运用上述规律来运算,并把这样式子的结果算出来:
①;
②;
③;
(2)在上面的①式中,请你通过增加或减少和中最后面奇数的个数,探寻本题计算规律,请用一个含字母n的式子表示你的发现;
(3)另外,该同学还有一个有趣发现:,,,,…,以此类推,你能写出第50个式子的结果并写出等式左边第一个数吗?说出你的理由.
2、如图,一次函数的图象交反比例函数的图象于,两点.
(1)求反比例函数与一次函数解析式.
(2)连接,求的面积.
(3)根据图象直接回答:当为何值时,一次函数的值大于反比例函数的值?
3、已知正比例函数y=mx与反比例函数y=交于点(3,2)和点(3a﹣1,2﹣b).
(1)求正比例函数和反比例函数的解析式.
(2)求a、b的值.
4、阅读材料:在合并同类项中,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.
(1)把看成一个整体,合并的结果是 .
(2)已知,求的值:
(3)已知,,,求的值.
5、如图,在平面直角坐标系中,点M在x轴负半轴上,⊙M与x轴交于A、B两点(A在B的左侧),与y轴交于C、D两点(点C在y轴正半轴上),且,点B的坐标为,点P为优弧CAD上的一个动点,连结CP,过点M作于点E,交BP于点N,连结AN.
(1)求⊙M的半径长;
(2)当BP平分∠ABC时,求点P的坐标;
(3)当点P运动时,求线段AN的最小值.
-参考答案-
一、单选题
1、C
【分析】
在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.
【详解】
解:在中,,
;
,,
;
又,
,
故选:.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.
2、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
3、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
4、A
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
5、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
6、B
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
7、C
【分析】
由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.
【详解】
解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,
∴每个B型包装箱可以装书(x+15)本.
依题意得:
故选:C.
【点睛】
本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.
8、A
【分析】
看哪个几何体的三视图中有长方形,圆,及三角形即可.
【详解】
解:、三视图分别为正方形,三角形,圆,故选项符合题意;
、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;
、三视图分别为正方形,正方形,正方形,故选项不符合题意;
、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;
故选:A.
【点睛】
本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.
9、B
【分析】
根据二次函数图象左加右减,上加下减的平移规律进行求解.
【详解】
解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
再向上平移5个单位长度,得:y=(x﹣3)2+5,
故选:B.
【点睛】
本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
10、A
【分析】
由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.
【详解】
解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角
∴底角的度数为
故选A.
【点睛】
本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.
二、填空题
1、a
【分析】
根据幂的乘方以及同底数幂的乘法解决此题.
【详解】
解:∵3m=a,3n=b,
∴33m+2n=33m•32n=(3m)3•(3n)2=a3b2.
故答案为:a3b2.
【点睛】
本题主要考查幂的乘方以及同底数幂的乘法的逆运算,熟练掌握幂的乘方以及同底数幂的乘法是解决本题的关键.
2、##
【分析】
根据数轴得出,,的符号,再去绝对值即可.
【详解】
由数轴得,
∴,,,
∴
.
故答案为:.
【点睛】
本题主要考查了数轴和绝对值,掌握数轴、绝对值以及合并同类项的法则是解题的关键.
3、3
【分析】
过点D作DG∥AC交CF于点G,交BE于点H,根据,可得,四边形ABHD和四边形ACGD是平行四边形,从而得到BH=AD=CG=2, ,进而得到FG=4,再由BE∥CF,得到△DEH∽△DFG,从而得到HE=1,即可求解.
【详解】
解:如图,过点D作DG∥AC交CF于点G,交BE于点H,
∵,
∴,四边形ABHD和四边形ACGD是平行四边形,
∴BH=AD=CG=2, ,
∵,
∴FG=4,
∵BE∥CF,
∴△DEH∽△DFG,
∴ ,
∴HE=1,
∴BE=BH+HE=3.
故答案为:3
【点睛】
本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键.
4、或
【分析】
分两种情况分析:当点E在BC下方时记点E为点,点E在BC上方时记点E为点,连接,,根据垂直平分线的性质得,,由正方形的性质得,,由旋转得,,故,是等边三角形,,是等腰三角形,由等边三角形和等腰三角形的求角即可.
【详解】
如图,当点E在BC下方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴,
当点E在BC上方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴.
故答案为:或.
【点睛】
本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.
5、30
【分析】
根据科学计算器的使用计算.
【详解】
解:依题意得:[3×(﹣2)3-1]÷(-)=30,
故答案为30.
【点睛】
利用科学计算器的使用规则把有理数混合运算,再计算.
三、解答题
1、
(1)①;②;③
(2)
(3)第50个式子为: 等式的左边第1个数为:
【分析】
(1)①根据阅读部分提供的方法可得:一共有个数,分成50组,每组的和为200,从而可得答案;②根据阅读部分提供的方法可得:一共有个数,分成25组,每组的和为202,从而可得答案;③由可得前面两个数的和等于后一个数,再计算即可.
(2)分两种情况讨论:当为偶数时,当为奇数时,再利用从具体到一般的探究方法矩形探究即可;
(3)由,,, ,可发现左边第一个数有: 归纳可得:第行第一个数为: 右边为 后续的奇数为: 再应用规律,从而可得答案.
(1)
解:①
②
③
(2)
解:
当为偶数时,
当为奇数时,
综上:(为正整数)
(3)
解: ,,,,
可发现左边第一个数有:
归纳可得:第行第一个数为: 右边为
后续的奇数为:
所以第50行第一个数为:
后续奇数为:
所以第50个式子为:
等式的左边第1个数为:
【点睛】
本题考查的是有理数的加法与乘法的运算,乘方运算,数字运算规律的探究,列代数式,掌握“从具体到一般的探究方法得到规律并运用规律解决问题”是解本题的关键.
2、
(1),;
(2)15;
(3)0<x<2或x>8.
【分析】
(1)先把点A的坐标代入,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;
(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;
(3)观察函数图象即可求得.
(1)
解:把A(2,-4)的坐标代入得:m=-8,
∴反比例函数的解析式是;
把B(a,-1)的坐标代入得:-1=,
解得:a=8,
∴B点坐标为(8,-1),
把A(2,-4)、B(8,-1)的坐标代入y=kx+b,得:,
解得: ,
∴一次函数解析式为;
(2)
解:设直线AB交x轴于C.
∵,
∴当y=0时,x=10,
∴OC=10,
∴△AOB的面积=△AOC的面积-三角形BOC的面积
=;
(3)
解:由图象知,当0<x<2或x>8时,一次函数的值大于反比例函数的值.
【点睛】
本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键.
3、
(1)正比例函数为: 反比例函数为:
(2)
【分析】
(1)把点(3,2)代入两个函数解析式,利用待定系数法求解解析式即可;
(2)由正比例函数y=mx与反比例函数y=交于点(3,2)和点(3a﹣1,2﹣b),可得关于原点成中心对称,再列方程组解方程即可得到答案.
(1)
解: 正比例函数y=mx与反比例函数y=交于点(3,2),
解得:
所以正比例函数为: 反比例函数为:
(2)
解: 正比例函数y=mx与反比例函数y=交于点(3,2)和点(3a﹣1,2﹣b),
关于原点成中心对称,
解得:,
【点睛】
本题考查的是利用待定系数法求解正比例函数与反比例函数的解析式,反比例函数的中心对称性,掌握“正比例函数y=mx与反比例函数y=的交点关于原点成中心对称”是解本题的关键.
4、
(1)
(2)
(3)
【分析】
(1)将系数相加减即可;
(2)将原式变形后整体代入,即可求出答案;
(3)将原式变形后,再整体代入计算.
(1)
解:= =,
故答案为:;
(2)
解:∵
∴原式;
(3)
解:∵,,,
∴原式
.
【点睛】
此题考查了整式的加减法,整式的化简求值,正确掌握整式的加减法计算法则及整体代入计算方法是解题的关键.
5、
(1)的半径长为6;
(2)点;
(3)线段AN的最小值为3.
【分析】
(1)连接CM,根据题意及垂径定理可得,,由直角三角形中角的逆定理可得,,得出为等边三角形,利用等边三角形的性质可得,即可确定半径的长度;
(2)连接AP,过点P作,交AB于点F,由直径所对的圆周角是可得为直角三角形,结合(1)中为等边三角形,根据BP平分,可得,在与中,分别利用含角的直角三角形的性质和勾股定理计算结合点所在象限即可得;
(3)结合图象可得:当B、N、A三点共线时,利用三角形三边长关系可得此时PN取得最小值,即可得出结果.
(1)
解:如图所示:连接CM,
∵,
∴,
∵,
∴,
∴,,
∵,
∴为等边三角形,
∵,
∴,
∴,
∴的半径长为6;
(2)
解:连接AP,过点P作,交AB于点F,如(1)中图所示:
∵AB为的直径,,
∴,
∴为直角三角形,
由(1)得为等边三角形,
∵BP平分,
∴,
∴,
∴,
在中,,
∴,
∴,
∴,
∴,,
点;
(3)
结合图象可得:当B、N、A三点共线时,,PN取得最小值,
∵在中,,
∴当B、N、A三点共线时,PN取得最小值,
此时点P与点A重合,点N与点M重合,
,
∴线段AN的最小值为3.
【点睛】
题目主要考查垂径定理,含角的直角三角形的性质和勾股定理,直径所对的圆周角是,等边三角形的判定和性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
【历年真题】2022年唐山迁安市中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【历年真题】2022年唐山迁安市中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了下面几何体是棱柱的是,计算3.14-的结果为 .,如图,在数轴上有三个点A等内容,欢迎下载使用。
【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解): 这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。
【真题汇编】2022年广东省深圳市罗湖区中考数学模拟考试 A卷(含答案详解): 这是一份【真题汇编】2022年广东省深圳市罗湖区中考数学模拟考试 A卷(含答案详解),共23页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列计算错误的是等内容,欢迎下载使用。