【历年真题】2022年山东省枣庄市中考数学三模试题(含答案详解)
展开
这是一份【历年真题】2022年山东省枣庄市中考数学三模试题(含答案详解),共22页。试卷主要包含了的值.,已知点等内容,欢迎下载使用。
2022年山东省枣庄市中考数学三模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y22、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )A.340° B.350° C.360° D.370°3、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A.50° B.65° C.75° D.80°4、下列问题中,两个变量成正比例的是( )A.圆的面积S与它的半径rB.三角形面积一定时,某一边a和该边上的高hC.正方形的周长C与它的边长aD.周长不变的长方形的长a与宽b5、的值( ).A. B.2022 C. D.-20226、如图,点 是 的角平分线 的中点, 点 分别在 边上,线段 过点 , 且 ,下列结论中, 错误的是( )A. B. C. D.7、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).A. B. C.或 D.8、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).A. B.C. D.9、下列图形绕直线旋转一周,可以得到圆柱的是( )A. B. C. D.10、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在不等式组的解集中,最大的整数解是______.2、如图,直线l1∥l2∥l3,直线l4,l5被直线l1、l2、l3所截,截得的线段分别为AB,BC,DE,EF,若AB=4,BC=6,DE=3,则EF的长是 ______.3、如图,在一条可以折叠的数轴上,A、B两点表示的数分别是,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且,则C点表示的数是______.4、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º. 5、如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,则阴影部分的面积为____.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点.(1)求A、B两点的坐标;(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标.2、阅读材料:在合并同类项中,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.(1)把看成一个整体,合并的结果是 .(2)已知,求的值:(3)已知,,,求的值.3、已知a+b=5,ab=﹣2.求下列代数式的值:(1)a2+b2;(2)2a2﹣3ab+2b2.4、如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为点D.(1)求该抛物线的表达式及点C的坐标;(2)联结BC、BD,求∠CBD的正切值;(3)若点P为x轴上一点,当△BDP与△ABC相似时,求点P的坐标.5、计算:. -参考答案-一、单选题1、A【分析】由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.【详解】解:∵二次函数y=x2﹣2x+m,∴抛物线开口向上,对称轴为x=1,∵x1<x2,∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,∴y1>y2,故选:A.【点睛】本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.2、B【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD,然后根据,的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC∵,的度数是一个正整数,∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;C、当3∠AOD+∠BOC=360°时,则=,不符合题意;D、当3∠AOD+∠BOC=370°时,则=,不符合题意.故选:B.【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.3、B【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE=∠BED=50°,∵AG为折痕,∴ .故选:B【点睛】本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.4、C【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意; 所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意; 所以正方形的周长C与它的边长a成正比例,故C符合题意; 所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.5、B【分析】数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.【详解】解:故选B【点睛】本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.6、D【分析】根据AG平分∠BAC,可得∠BAG=∠CAG,再由点 是 的中点,可得 ,然后根据,可得到△DAE∽△CAB,进而得到△EAF∽△BAG,△ADF∽△ACG,即可求解.【详解】解:∵AG平分∠BAC,∴∠BAG=∠CAG,∵点 是 的中点,∴ ,∵,∠DAE=∠BAC,∴△DAE∽△CAB,∴ ,∴∠AED=∠B,∴△EAF∽△BAG,∴ ,故C正确,不符合题意;∵,∠BAG=∠CAG,∴△ADF∽△ACG,∴ ,故A正确,不符合题意;D错误,符合题意;∴,故B正确,不符合题意;故选:D【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.7、A【分析】先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.【详解】解:∵当x1=1、x2=3时,y1=y2,∴点A与点B为抛物线上的对称点,∴,∴b=-4;∵对于任意实数x1、x2都有y1+y2≥2,∴二次函数y=x2-4x+n的最小值大于或等于1,即,∴c≥5.故选:A.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.8、B【分析】先判断再结合一次函数,二次函数的增减性逐一判断即可.【详解】解: 同理: 当时,随的增大而减小,由可得随的增大而增大,故A不符合题意;的对称轴为: 图象开口向下,当时,随的增大而减小,故B符合题意;由可得随的增大而增大,故C不符合题意;的对称轴为: 图象开口向上,时,随的增大而增大,故D不符合题意;故选B【点睛】本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.9、A【分析】根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案.【详解】解:A.旋转后可得圆柱,故符合题意;B. 旋转后可得球,故不符合题意;C. 旋转后可得圆锥,故不符合题意;D. 旋转后可得圆台,故不符合题意;故选:A.【点睛】本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.10、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线=,∴圆锥的侧面积=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题1、4【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.【详解】解: ,解不等式①得,x≥2,解不等式②得, ,∴不等式组的解集为,∴不等式组的最大整数解为4.故答案为:4.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.2、4.5【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【详解】解:∵l1//l2//l3,∴,∵AB=4,BC=6,DE=3,∴,解得:EF=4.5,故答案为:4.5.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3、【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【详解】解:∵A,B表示的数为-7,3,∴AB=3-(-7)=4+7=10,∵折叠后AB=2,∴BC==4,∵点C在B的左侧,∴C点表示的数为3-4=-1.故答案为:-1.【点睛】本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.4、70【分析】如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.【详解】解:如图,由三角形的内角和定理得:,图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,,故答案为:70.【点睛】本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.5、20【分析】根据阴影部分的面积等于两个正方形的面积之和减去空白的面积,列式化简,再把a+b=10,ab=20代入计算即可.【详解】解:∵大小两个正方形边长分别为a、b,∴阴影部分的面积S=a2+b2a2(a+b)ba2b2ab;∵a+b=10,ab=20,∴Sa2b2ab(a+b)2ab10220=20.故答案为:20.【点睛】本题考查了完全平方公式的几何背景,熟练掌握完全平方公式及正方形和三角形的面积计算是解题的关键.三、解答题1、(1)A(1,0),B(5,0)(2)(6,5)【分析】(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可.(1)解:∵二次函数的图象与y轴交于∴,解得a=1∴二次函数的解析式为∵二次函数的图象与x轴交于A、B两点∴令y=0,即,解得x=1或x=5∵点A在点B的左侧∴A(1,0),B(5,0).(2)解:由(1)得函数解析式为∴抛物线的顶点为(3,-4)∵点D和点C到x轴的距离相等,即为5∴点D在x轴的上方,设D的坐标为(d,5)∴,解得d=6或d=0∴点D的坐标为(6,5).【点睛】本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键.2、(1)(2)(3)【分析】(1)将系数相加减即可;(2)将原式变形后整体代入,即可求出答案;(3)将原式变形后,再整体代入计算.(1)解:= =,故答案为:;(2)解:∵∴原式;(3)解:∵,,,∴原式.【点睛】此题考查了整式的加减法,整式的化简求值,正确掌握整式的加减法计算法则及整体代入计算方法是解题的关键.3、(1)29;(2)64【分析】(1)利用已知得出(a+b)2=25,进而化简求出即可;(2)利用(1)中所求,进而求出即可.(1)解:(1)∵a+b=5,ab=﹣2,∴(a+b)2=25,则a2+b2+2×(﹣2)=25,故a2+b2=29;(2)(2)2a2﹣3ab+2b2=2(a2+b2)﹣3ab=2×29﹣3×(﹣2)=64.【点睛】本题考查了完全平方公式的应用,解题的关键是正确利用完全平方公式求出.4、(1),点C的坐标为(0,-3)(2)(3)(-3,0)或(-,0)【分析】(1)把A、B两点坐标代入函数求出b,c的值即可求函数表达式;再令x=0,求出y从而求出C点坐标;(2)先求B、C、D三点坐标,再求证△BCD为直角三角形,再根据正切的定义即可求出;(3)分两种情况分别进行讨论即可.(1)解:(1)将A(-1,0)、B(3,0)代入,得 解得: 所以,. 当x=0时,.∴点C的坐标为(0,-3).(2)解:连接CD,过点D作DE⊥y轴于点E,∵,∴点D的坐标为(1,-4). ∵B(3,0)、C(0,-3)、D(1,-4),E(0,-4),∴OB=OC=3,CE=DE=1,∴BC=,DC=,BD=.∴. ∴∠BCD=90°. ∴tan∠CBD=. (3)解:∵tan∠ACO=,∴∠ACO=∠CBD. ∵OC =OB,∴∠OCB=∠OBC=45°.∴∠ACO+∠OCB =∠CBD+∠OBC.即:∠ACB =∠DBO. ∴当△BDP与△ABC相似时,点P在点B左侧.(i)当时,∴.∴BP=6.∴P(-3,0). (ii)当时,∴.∴BP=.∴P(-,0). 综上,点P的坐标为(-3,0)或(-,0).【点睛】本题是二次函数的综合题,掌握相关知识是解题的关键.5、【分析】根据完全平方公式及平方差公式,然后再合并同类项即可.【详解】解:原式.【点睛】本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可.
相关试卷
这是一份【历年真题】2022年山东省枣庄市中考数学三年高频真题汇总卷(含答案详解),共23页。试卷主要包含了已知的两个根为等内容,欢迎下载使用。
这是一份【历年真题】2022年山东省枣庄市中考数学历年真题汇总 (A)卷(含答案及详解),共22页。试卷主要包含了已知,则的值为,如图,点在直线上,平分,,,则,下列命题,是真命题的是,已知点D等内容,欢迎下载使用。
这是一份【历年真题】2022年山东省枣庄市中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共22页。