【历年真题】中考数学第一次模拟试题(含答案详解)
展开中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则的值是( )
A. B.0 C.1 D.2022
2、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
3、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
4、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
5、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )
A.7 B.12 C.14 D.18
6、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
7、下列说法正确的是( )
A.等腰三角形高、中线、角平分线互相重合
B.顶角相等的两个等腰三角形全等
C.底角相等的两个等腰三角形全等
D.等腰三角形的两个底角相等
8、若菱形的周长为8,高为2,则菱形的面积为( )
A.2 B.4 C.8 D.16
9、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.
A.3 B.2 C.1 D.0
10、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果有理数满足,在数轴上点所表示的数是,点所表示的数是;那么在数轴上_______(填点和点中哪个点在哪个点)的右边.
2、已知是二元一次方程的一个解,那么_______.
3、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.
4、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
5、已知,,则代数式的值为____________.
三、解答题(5小题,每小题10分,共计50分)
1、已知关于x的方程x2﹣+k=0有实数根,求k的取值范围.
2、如图,四边形ABCD内接⊙O,∠C=∠B.
(1)如图1,求证:AB=CD;
(2)如图2,连接BO并延长分别交⊙O和CD于点F、E,若CD=EB,CD⊥EB,求tan∠CBF;
(3)如图3,在(2)的条件下,在BF上取点G,连接CG并延长交⊙O于点I,交AB于H,EF∶BG=1∶3,EG=2,求GH的长.
3、为了解班级学生参加课后服务的学习效果,何老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)此次调查的总人数为________;
(2)扇形统计图中“不达标”对应的圆心角度数是________°;
(3)请将条形统计图补充完整;
(4)为了共同进步,何老师准备从被调查的A类和D类学生中各随机抽取一位同学进行“一帮一”互助学习.请用画树状图或列表的方法求出所选两位同学恰好是相同性别的概率.
4、如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.
(1)求原正方形空地的边长;
(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.
5、A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地.
(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?
(2)已知甲的速度为,若乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,判断乙能否在途中超过甲,请说明理由.
-参考答案-
一、单选题
1、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
2、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
3、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
4、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
5、C
【分析】
第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.
【详解】
解:,
2a-8=x-3,
x=2a-5,
∵方程的解为非负数,x-3≠0,
∴,
解得a≥且a≠4,
,
解不等式组得:,
∵不等式组无解,
∴5-2a≥-7,
解得a≤6,
∴a的取值范围:≤a≤6且a≠4,
∴满足条件的整数a的值为3、5、6,
∴3+5+6=14,
故选:C.
【点睛】
本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.
6、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
7、D
【分析】
根据等腰三角形的性质和全等三角形的判定方法对选项一一分析判定即可.
【详解】
解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,该选项说法错误,不符合题意;
B、顶角相等的两个等腰三角形不一定全等,因为边不相等,该选项说法错误,不符合题意;
C、底角相等的两个等腰三角形不一定全等,因为没有边对应相等,该选项说法错误,不符合题意;
D、等腰三角形的两个底角相等,该选项说法正确,符合题意;
故选:D.
【点睛】
本题考查等腰三角形的性质与全等判定,掌握等腰三角形的性质与等腰三角形全等判定是解题关键.
8、B
【分析】
根据周长求出边长,利用菱形的面积公式即可求解.
【详解】
∵菱形的周长为8,
∴边长=2,
∴菱形的面积=2×2=4,
故选:B.
【点睛】
此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
9、A
【分析】
①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;
②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;
③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.
【详解】
解:①如下图,连接AM,延长DE交BF于J,
∵四边形ABCD是正方形,
∴AB=AD,∠DAE=∠BAF=90°,
由题意可得AE=AF,
∴△BAF≌△DAE(SAS),
∴∠ABF=∠ADE,
∵∠ADE+∠AED=90°,∠AED=∠BEJ,
∴∠BEJ+∠EBJ=90°,
∴∠BJE=90°,
∴DJ⊥BF,
由翻折可知:EA=EM,DM=DA,
∴DE垂直平分线段AM,
∴BF∥AM,故①正确;
②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,
在MD上取一点J,使得ME=MJ,连接EJ,
则由题意可得∠M=90°,
∴∠MEJ=∠MJE=45°,
∴∠JED=∠JDE=22.5°,
∴EJ=JD,
设AE=EM=MJ=x,则EJ=JD=x,
则有x+x =4,
∴x=4﹣4,
∴AE=4﹣4,故②正确;
③如下图,连接CF,
当EF=CE时,设AE=AF=m,
则在△BCE中,有2m²=4²+(4-m)2,
∴m=4﹣4或-4﹣4 (舍弃),
∴AE=4﹣4,故③正确;
故选A.
【点睛】
本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
10、C
【分析】
证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
【详解】
解:四边形是正方形,
,,,
,
,
,
,
,
,
,
,
,
是等腰直角三角形,
,
故选:C.
【点睛】
本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
二、填空题
1、点在点
【分析】
利用a61<0可知a<0,于是可得a622>0,a2021<0,根据原点左边的数为负数,原点右边的数为正数可得结论.
【详解】
解:,
.
,,
点在点的右边.
故答案为:点在点.
【点睛】
本题主要考查了有理数的乘方,数轴.利用负数的偶次方是正数,负数的奇数次方是负数的法则是解题的关键.
2、##
【分析】
把代入,即可求出a的值.
【详解】
解:由题意可得:,
,
解得:,
故答案为:.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
3、-3
【分析】
两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.
【详解】
解:两个方程相加得:3x+3y=3a+9,
∵x、y互为相反数,
∴x+y=0,
∴3x+3y=0,
∴3a+9=0,
解得:a=-3,
故答案为:-3.
【点睛】
本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.
4、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
5、-16.5
【分析】
先把待求的式子变形,再整体代值即可得出结论.
【详解】
解:
,
∵,,
∴原式=3×(-5)-×(-3)=-15-1.5=-16.5.
故答案为:-16.5.
【点睛】
本题考查了整式的加减-化简求值,利用整体代入的思想是解此题的关键.
三、解答题
1、
【分析】
根据根的判别式的意义得到△,还有被开方式,然后解不等式组即可.
【详解】
解:根据题意得△且,
解得:.
【点睛】
本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的两个实数根;当△时,方程有两个相等的两个实数根;当△时,方程无实数根,本题关键还应考虑被开方式非负.
2、(1)见解析;(2);(3)
【分析】
(1)过点D作DE∥AB交BC于E,由圆内接四边形对角互补可以推出∠B+∠A=180°,证得AD∥BC,则四边形ABED是平行四边形,即可得到AB=DE,∠DEC=∠B=∠C,这DE=CD=AB;
(2)连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x,由垂径定理可得,∠CEB=∠CEF=∠FCB=90°,则∠FBC+∠F=∠FCE+∠F=90°,可得∠FBC=∠FCE;由勾股定理得,则,
解得,则;
(3)EF:BG=1:3,即则 解得,则,,,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,分别求出G点坐标为,C点坐标为;A点坐标为
然后求出直线CG的解析式为,直线AB的解析式为,即可得到H的坐标为(,),则.
【详解】
解:(1)如图所示,过点D作DE∥AB交BC于E,
∵四边形ABCD是圆O的圆内接四边形,
∴∠A+∠C=180°,
∵∠B=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABED是平行四边形,
∴AB=DE,∠DEC=∠B=∠C,
∴DE=CD=AB;
(2)如图所示,连接OC,FC,
设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x
∵CD⊥EB,BF是圆O的直径,
∴,∠CEB=∠CEF=∠FCB=90°,
∴∠FBC+∠F=∠FCE+∠F=90°,
∴∠FBC=∠FCE;
∵,
∴,
∴,
解得,
∴;
(3)∵EF:BG=1:3,即
∴ ,即
∴,
解得,
∴,
∴,,
如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,
∴,
∴,,
∵,
∴,,
∴,,
∴,,
∴G点坐标为(,),C点坐标为(,0);
∵,
∴,
∵∠ABC=∠ECB,
∴,
∴,
∵,
∴,
∴,
∴,
∴A点坐标为(,)
设直线CG的解析式为,直线AB的解析式为,
∴,,
∴,,
∴直线CG的解析式为,直线AB的解析式为,
联立,
解得,
∴H的坐标为(,),
∴.
【点睛】
本题主要考查了圆内接四边形的性质,平行四边形的性质与判定,等腰三角形的性质与判定,解直角三角形,一次函数与几何综合,垂径定理,勾股定理,两点距离公式,解题的关键在于能够正确作出辅助线,利用数形结合的思想求解.
3、
(1)20人
(2)36
(3)见解析
(4)
【分析】
(1)由条形统计图中B类学生数及扇形统计图中B类学生的百分比即可求得参与调查的总人数;
(2)由扇形统计图可求得不达标的学生所占的百分比,它与360°的积即为所求的结果;
(3)现两种统计图及(1)中所求得的总人数,可分别求得C类、D类学生的人数,从而可求得这两类中未知的学生数,从而可补充完整条形统计图;
(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表即可求得所有可能的结果数及所选两位同学恰好是相同性别的结果数,从而可求得概率.
(1)
由条形统计图知,B类学生共有6+4=10(人),由扇形统计图知,B类学生所占的百分比为50%,则参与调查的总人数为:(人)
故答案为:20人
(2)
由扇形统计图知,D类学生所占的百分比为:,则扇形统计图中“不达标”对应的圆心角度数是:360°×10%=36°
故答案为:36
(3)
C类学生总人数为:20×25%=5(人),则C类学生中女生人数为:(人)
D类学生总人数为:20×10%=2(人),则C类学生中男生人数为:(人)
补充完整的条形统计图如下:
(4)
记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表如下:
| 男1 | 女1 | 女2 |
男 | 男男1 | 男女1 | 男女2 |
女 | 女男1 | 女女1 | 女女2 |
则选取两位同学的所有可能结果数为6种,所选两位同学恰好是相同性别的结果数有3种,所以所选两位同学恰好是相同性别的概率为:
【点睛】
本题是统计图的综合,考查了条形统计图与扇形统计图,简单事件的概率,关键是读懂两个统计图并能从图中获取信息.
4、
(1)30m
(2)1m
【分析】
(1)设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.
【小题1】
解:设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,
依题意得:(x-4)(x-5)=650,
整理得:x2-9x-630=0,
解得:x1=30,x2=-21(不合题意,舍去).
答:原正方形空地的边长为30m.
【小题2】
设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,
依题意得:(30-y)(30-1-y)=812,
整理得:y2-59y+58=0,
解得:y1=1,y2=58(不合题意,舍去).
答:小道的宽度为1m.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
5、
(1)甲的速度是12.5千米/时,乙的速度是50千米/时;
(2)乙能在途中超过甲.理由见解析
【分析】
(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;
(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,列不等式组求得乙的速度范围,进步计算即可判断.
(1)
解:设甲的速度是x千米/时,乙的速度是4x千米/时,
由题意,得,
解得x=12.5,
经检验x=12.5是分式方程的解,
12.5×4=50.
答:甲的速度是12.5千米/时,乙的速度是50千米/时;
(2)
解:乙能在途中超过甲.理由如下:
设乙的速度是y千米/时,
由题意,得,
解得:44<y<48,
甲走完全程花时间:小时,则乙的时间为:小时,
∴乙小时走的路程s为:×44<s<×48,即25<s<28,
∴乙能在途中超过甲.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等和不等关系,并据此列出方程和不等式组.
【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解): 这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。
【历年真题】2022年中考数学第一次模拟试题(含答案及详解): 这是一份【历年真题】2022年中考数学第一次模拟试题(含答案及详解),共20页。试卷主要包含了计算-1-1-1的结果是,下列各数中,是无理数的是等内容,欢迎下载使用。
【历年真题】最新中考数学三年真题模拟 卷(Ⅱ)(含答案详解): 这是一份【历年真题】最新中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共25页。试卷主要包含了如图,点在直线上,平分,,,则,下列二次根式中,最简二次根式是等内容,欢迎下载使用。