【历年真题】2022年四川达州市中考数学模拟专项测评 A卷(精选)
展开2022年四川达州市中考数学模拟专项测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
2、下列方程中,解为的方程是( )
A. B. C. D.
3、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
4、下列计算错误的是( )
A. B.
C. D.
5、如图,中,,,AD平分交BC于点D,点E为AC的中点,连接DE,则的面积是( )
A.20 B.16 C.12 D.10
6、某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为( )
A. B.
C. D.
7、几个同学打算合买一副球拍,每人出7元,则还少4元;每人出8元,就多出3元.他们一共有( )个人.
A.6 B.7 C.8 D.9
8、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
9、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
10、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
2、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.
3、如图,三角形纸片中,点、、分别在边、、上,.将这张纸片沿直线翻折,点与点重合.若比大,则__________.
4、如图,为一长条形纸带,,将沿折叠,C、D两点分别、对应,若,则的度数为_________.
5、方程(x﹣3)(x+4)=﹣10的解为 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,点 A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:
①存在无数个中点四边形MNPQ是平行四边形;
②存在无数个中点四边形MNPQ是菱形
③存在无数个中点四边形MNPQ是矩形
④存在无数个中点四边形MNPQ是正方形
所有正确结论的序号是___.
2、计算:
(1);
(2).
3、如图,有一块直角三角形纸片,两直角边cm,cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.
4、先化简,再求值:,其中,.
5、已知点,则点到轴的距离为______,到轴的距离为______.
-参考答案-
一、单选题
1、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、B
【分析】
把x=5代入各个方程,看看是否相等即可
【详解】
解:A. 把x=5代入得:左边=8,右边=5,左边≠右边,所以,不是方程的解,故本选项不符合题意;
B. 把x=5代入得:左边=3,右边=3,左边=右边,所以,是方程的解,故本选项符合题意;
C. 把x=5代入得:左边=15,右边=10,左边≠右边,所以,不是方程的解,故本选项不符合题意;
D. 把x=5代入得:左边=7,右边=3,左边≠右边,所以,不是方程的解,故本选项不符合题意;
故选:B
【点睛】
本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键
3、B
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
4、B
【分析】
根据整式的乘除运算法则逐个判断即可.
【详解】
解:选项A:,故选项A正确,不符合题意;
选项B:,故选项B不正确,符合题意;
选项C:,故选项C正确,不符合题意;
选项D:,故选项D正确,不符合题意;
故选:B.
【点睛】
本题考查了同底数幂的乘、除运算;幂的乘方、积的乘方等运算,熟练掌握运算法则是解决本类题的关键.
5、D
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;
【详解】
解:∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,,
∴,
∴,
∵点E为AC的中点,
∴,
故选:D
【点睛】
本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
6、C
【分析】
由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.
【详解】
解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,
∴每个B型包装箱可以装书(x+15)本.
依题意得:
故选:C.
【点睛】
本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.
7、B
【分析】
依题意,按照一元一次方程定义和实际应用,列方程计算,即可;
【详解】
由题知,设合买球拍同学的人数为;
∴ ,可得:
∴故选
【点睛】
本题主要考查一元一次方程的实际应用,关键在熟练审题和列方程计算;
8、C
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
9、D
【分析】
当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
10、A
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
二、填空题
1、或
【分析】
分两种情况分析:当点E在BC下方时记点E为点,点E在BC上方时记点E为点,连接,,根据垂直平分线的性质得,,由正方形的性质得,,由旋转得,,故,是等边三角形,,是等腰三角形,由等边三角形和等腰三角形的求角即可.
【详解】
如图,当点E在BC下方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴,
当点E在BC上方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴.
故答案为:或.
【点睛】
本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.
2、3 4 (3,﹣4)
【分析】
根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.
【详解】
解:∵A(x,4)关于y轴的对称点是B(-3,y),
∴x=3,y=4,
∴A点坐标为(3,4),
∴点A关于x轴的对称点的坐标是(3,-4).
故答案为:3;4;(3,-4).
【点睛】
本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.
3、
【分析】
由折叠可知,由平角定义得 + =120°,再根据比大,得到 - =,即可解得的值.
【详解】
解:由折叠可知,
∵ + + =180°,
∴ + =120°,
∴ =120°-,
∵比大,
∴ - =,即120°- - =
解得 =,
故答案为:
【点睛】
此题考查折叠的性质、平角的定义及一元一次方程的解法,掌握相应的性质和解法是解答此题的关键.
4、度
【分析】
由折叠得,由长方形的性质得到∠1=,由,求出∠2的度数,即可求出的度数.
【详解】
解:由折叠得,
∵四边形是长方形,
∴,
∴∠1=,
∴,
∵,
∴,
得,
∴,
∴,
故答案为:.
【点睛】
此题考查了折叠的性质,平行线的性质,正确掌握折叠的性质及长方形的性质是解题的关键.
5、
【分析】
先把方程化为一元二次方程的一般形式,再利用因式分解法解方程即可.
【详解】
解:(x﹣3)(x+4)=﹣10
或
解得:
故答案为:
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“利用十字乘法把方程的左边分解因式化为两个一次方程”是解本题的关键.
三、解答题
1、①②③
【分析】
根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,由此即可判断.
【详解】
解:∵一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,
∴存在无数个中点四边形MNPQ是平行四边形,存在无数个中点四边形MNPQ是菱形,存在无数个中点四边形MNPQ是矩形.
故答案为:①②③
【点睛】
本题考查中点四边形,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
2、
(1)
(2)
【分析】
(1)先把括号内的二次根式化简及除法运算,再计算二次根式的除法运算,最后合并同类二次根式即可;
(2)先计算括号内的二次根式的减法运算,再计算二次根式的除法运算,从而可得答案.
(1)
解:
(2)
解:
【点睛】
本题考查的是二次根式的混合运算,掌握“二次根式的混合运算的运算顺序”是解本题的关键.
3、CD长为3cm
【分析】
在中,由勾股定理得,由折叠对称可知,cm,,,设,则,在中,由勾股定理得,计算求解即可.
【详解】
解:∵cm,cm
∴在中,
由折叠对称可知,cm,
∴cm
设,则
∴在中,由勾股定理得
即
解得
∴CD的长为3cm.
【点睛】
本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.
4、ab,1
【分析】
根据分式的减法和除法可以化简题目中的式子,然后将a,b的值代入化简后的式子即可解答本题.
【详解】
解:
;
当,时,原式=
【点睛】
本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.
5、2 3
【分析】
点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.
【详解】
∵点的坐标为,
∴点到轴的距离为,到轴的距离为.
故答案为:2;3
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
【真题汇编】中考数学模拟专项测评 A卷(精选): 这是一份【真题汇编】中考数学模拟专项测评 A卷(精选),共20页。试卷主要包含了下列式中,与是同类二次根式的是等内容,欢迎下载使用。
【历年真题】最新中考数学模拟测评 卷(Ⅰ)(精选): 这是一份【历年真题】最新中考数学模拟测评 卷(Ⅰ)(精选),共23页。试卷主要包含了如图,是的外接圆,,则的度数是等内容,欢迎下载使用。
【历年真题】2022年山东省济南市中考数学模拟专项测评 A卷(精选): 这是一份【历年真题】2022年山东省济南市中考数学模拟专项测评 A卷(精选),共29页。试卷主要包含了下列方程是一元二次方程的是,已知和是同类项,那么的值是,已知点A等内容,欢迎下载使用。