【难点解析】2022年北京市丰台区中考数学第一次模拟试题(含详解)
展开
这是一份【难点解析】2022年北京市丰台区中考数学第一次模拟试题(含详解),共21页。试卷主要包含了如图,点C等内容,欢迎下载使用。
2022年北京市丰台区中考数学第一次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在以下实数中:-0.2020020002…,,,,,,无理数的个数是( )A.2个 B.3个 C.4个 D.5个2、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )A. B.2 C.3 D.43、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )A.11.5×108 B.1.15×108 C.11.5×109 D.1.15×1094、如图,五边形中,,CP,DP分别平分,,则( )A.60° B.72° C.70° D.78°5、如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是( )A.1:4 B.1:2 C.2:1 D.4:16、如图,点C、D分别是线段AB上两点(,),用圆规在线段CD上截取,,若点E与点F恰好重合,,则( )A.4 B.4.5 C.5 D.5.57、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>1258、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A.增加10% B.增加4% C.减少4% D.大小不变9、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )A. B. C. D.110、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )A.个 B.个 C.个 D.个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x为不等式组的解,则的值为______.2、计算:_________,_________,_________.分解因式:_________,_________,________.3、如图,AB,CD是的直径,弦,所对的圆心角为40°,则的度数为______.4、如图,四边形中,,,,在、上分别找一点M、N,当周长最小时,的度数是______________.5、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.三、解答题(5小题,每小题10分,共计50分)1、解不等式:﹣2<.2、若关于x的一元二次方程有两个相等的实数根.(1)用含m的代数式表示n;(2)求的最小值.3、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?4、如图,在平面直角坐标系中,顶点的横、纵坐标都是整数.若将以某点为旋转中心,顺时针旋转90°得到,其中A、B、C分别和D、E、F对应.(1)请通过画图找出旋转中心M,点M的坐标为______.(2)直接写出点A经过的路径长为______.5、如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长. -参考答案-一、单选题1、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【详解】解:无理数有-0.2020020002…,,,,共有4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…,等有这样规律的数.解题的关键是理解无理数的定义.2、B【分析】由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点落在点处,,,又∵,∴,∴,,又为的中点,AE=AE'∴,,即,.故选:B.【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.3、D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:11.5亿=1150000000=1.5×109.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、C【分析】根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.【详解】解:五边形的内角和等于,,,、的平分线在五边形内相交于点,,.故选:C.【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.5、A【分析】根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出,根据相似三角形的性质计算,得到答案.【详解】解:∵△A′B′C′与△ABC是位似图形,∴△A′B′C′∽△ABC,A′B′∥AB,∴△OA′B′∽△OAB,∴,∴△A′B'C′与△ABC的面积比为1:4,故选:A.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.6、A【分析】根据题意可得,,再由即可得到答案.【详解】解:CE=AC,DF=BD,点E与点F恰好重合,∴CE=AC,DE=BD,∴,,∴,故选A.【点睛】本题主要考查了与线段中点有关的计算,解题的关键在于能够根据题意得到,.7、D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x-5(20-x)>125,故选:D.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.8、B【分析】设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.【详解】设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.故选:B【点睛】本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.9、A【分析】直接根据概率公式求解即可.【详解】解:由题意得,他恰好选到《新中国史》这本书的概率为,故选:A.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.10、A【分析】过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.【详解】解:过点A作AD⊥BC与D,∵BD=4,,∴AD=BD,∵,∴,∴BC=7,∴DC=BC-BD=7-4=3,∴①主视图中正确;∴左视图矩形的面积为3×6=,∴②正确;∴tanC,∴③正确;其中正确的个数为为3个.故选择A.【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.二、填空题1、2【分析】解不等式组得到x的范围,再根据绝对值的性质化简.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:,∴===2故答案为:2.【点睛】本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.2、 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,,.分解因式:,,.故答案为:;;;;;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.3、70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE,根据平行线的性质即可得到∠AOC的度数.【详解】解:连接OE,如图,∵弧CE所对的圆心角度数为40°,∴∠COE=40°,∵OC=OE,∴∠OCE=∠OEC,∴∠OCE=(180°-40°)÷2=70°,∵CE//AB,∴∠AOC=∠OCE=70°,故答案为:70°.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出∠COE=40°是解题的关键.4、128°【分析】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时△AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.【详解】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图 由对称的性质得:AN=FN,AM=EM∴∠F=∠NAD,∠E=∠MAB∵AM+AN+MN=EM+FN+MN≥EF∴当M、N在线段EF上时,△AMN的周长最小∵∠AMN+∠ANM=∠E+∠MAB+∠F+∠NAD=2∠E+2∠F=2(∠E+∠F)=2(180°−∠BAD)=2×(180°−116°)=128°故答案为:128°【点睛】本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键.5、【分析】如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.【详解】如图,过点O作,∵四边形ABCD是矩形,∴,,,∵,∴,∴,∴,∴,,∴.故答案为:.【点睛】本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.三、解答题1、x>【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可.【详解】解:不等式整理得,,去分母,得2(2x+1)-12<3(3x-2).去括号,得4x+2-12<9x-6.移项,得4x-9x<-6+12-2.合并同类项,得-5x<4,系数化为1,得x>.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2、(1)(2)【分析】(1)由两个相等的实数根知,整理得n的含m的代数式.(2)对进行配方,然后求最值即可.(1)解:由题意知∴(2)解:∵∴当时,的值最小,为∴的最小值为.【点睛】本题考查了一元二次方程的根,一元二次代数式的最值.解题的关键在于配完全平方.3、50【分析】设购进x盏节能灯,列一元一次方程解答.【详解】解:设购进x盏节能灯,由题意得25x+160=30(x-3)解得x=50,答:该商店共购进了50盏节能灯.【点睛】此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.4、(1)(2)【分析】(1)根据对应点连线段的垂直平分线的交点即为旋转中心,可得结论.(2)根据经过的路径长为以为圆心,3为半径的圆周长的即可求解.(1)解:连接,分别作的垂直平分线交点即为所求,如下图: ,故答案是:;(2)解:由题意及下图,知点经过的路径长为以为圆心,3为半径的圆周长的,点经过的路径长为:,故答案是:.【点睛】本题考查坐标与图形变化旋转,解题的关键是理解旋转中心是对应点连线段的垂直平分线的交点.5、(1)见解析(2)【分析】(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.【小题1】解:证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵CF∥ED,∴四边形CDEF是平行四边形,∵DC=DE.∴四边形CDEF是菱形;【小题2】如图,连接GF,∵四边形CDEF是菱形,∴CF=CD=5,∵BC=3,∴BF=,∴AF=AB-BF=5-4=1,在△CDG和△CFG中,,∴△CDG≌△CFG(SAS),∴FG=GD,∴FG=GD=AD-AG=3-AG,在Rt△FGA中,根据勾股定理,得FG2=AF2+AG2,∴(3-AG)2=12+AG2,解得AG=.【点睛】本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.
相关试卷
这是一份北京市丰台区2021-2022学年中考数学模拟试题含解析,共21页。试卷主要包含了已知,下列计算正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年北京市丰台区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共26页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份【难点解析】2022年北京市顺义区中考数学三年真题模拟 卷(Ⅱ)(含详解),共23页。试卷主要包含了若,,且a,b同号,则的值为,已知4个数,下列计算正确的是等内容,欢迎下载使用。