![【难点解析】2022年北京市昌平区中考数学第三次模拟试题(含答案及详解)第1页](http://img-preview.51jiaoxi.com/2/3/12676368/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年北京市昌平区中考数学第三次模拟试题(含答案及详解)第2页](http://img-preview.51jiaoxi.com/2/3/12676368/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年北京市昌平区中考数学第三次模拟试题(含答案及详解)第3页](http://img-preview.51jiaoxi.com/2/3/12676368/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年北京市昌平区中考数学第三次模拟试题(含答案及详解)
展开
这是一份【难点解析】2022年北京市昌平区中考数学第三次模拟试题(含答案及详解),共24页。试卷主要包含了下列命题中,是真命题的是,已知圆O的半径为3,AB,观察下列图形等内容,欢迎下载使用。
2022年北京市昌平区中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中,真命题是( )A.同位角相等B.有两条边对应相等的等腰三角形全等C.互余的两个角都是锐角D.相等的角是对顶角.2、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )A.个 B.个 C.个 D.个3、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )A. B. C. D.4、下列命题中,是真命题的是( )A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则5、对于二次函数y=﹣x2+2x+3,下列说法不正确的是( )A.开口向下B.当x≥1时,y随x的增大而减小C.当x=1时,y有最大值3D.函数图象与x轴交于点(﹣1,0)和(3,0)6、已知圆O的半径为3,AB、AC是圆O的两条弦,AB=3,AC=3,则∠BAC的度数是( )A.75°或105° B.15°或105° C.15°或75° D.30°或90°7、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )A.21 B.25 C.28 D.298、如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是( ).A.勤 B.洗 C.手 D.戴9、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+310、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )A. B.133 C.200 D.400第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的最大整数解是_______.2、若等腰三角形的一个外角等于80°,则与它不相邻的两个内角的度数分别是 ___;3、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________4、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.5、化简:(a>0)=___;三、解答题(5小题,每小题10分,共计50分)1、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:(1)本次调查的学生人数为___________.(2)补全频数直方图.(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议.2、如图,四边形ABCD内接⊙O,∠C=∠B.(1)如图1,求证:AB=CD;(2)如图2,连接BO并延长分别交⊙O和CD于点F、E,若CD=EB,CD⊥EB,求tan∠CBF;(3)如图3,在(2)的条件下,在BF上取点G,连接CG并延长交⊙O于点I,交AB于H,EF∶BG=1∶3,EG=2,求GH的长.3、已知:如图,Rt△ABC中,∠C=90°,CA=CB,D是边CB上一点,DE⊥AB于点E,且CD=BE.求证:AD平分∠BAC.4、计算:5、如图△ABC中,∠B=60°,∠BAC与∠ACB的角平分线AD、CE交于O.求证:AC=AE+DC. -参考答案-一、单选题1、C【分析】根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.【详解】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;C、互余的两个角都是锐角,本选项说法是真命题;D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、A【分析】过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.【详解】解:过点A作AD⊥BC与D,∵BD=4,,∴AD=BD,∵,∴,∴BC=7,∴DC=BC-BD=7-4=3,∴①主视图中正确;∴左视图矩形的面积为3×6=,∴②正确;∴tanC,∴③正确;其中正确的个数为为3个.故选择A.【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.3、B【分析】设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.【详解】解:设该分派站有x名快递员,则可列方程为:7x+6=8x-1.故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.4、B【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.【详解】解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D.若2x=3y,则,所以D选项不符合题意.故选:B.【点睛】本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:y=-x2++2x+3=-(x-1)2+4,∵a=-1<0,∴该函数的图象开口向下,故选项A正确;∵对称轴是直线x=1,∴当x≥1时,y随x的增大而减小,故选项B正确;∵顶点坐标为(1,4),∴当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,∴函数图象与x轴的交点为(-1,0)和(3,0),故D正确.故选:C.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.6、B【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【详解】解:分别作OD⊥AC,OE⊥AB,垂足分别是D、E.∵OE⊥AB,OD⊥AB,∴AE=AB=,AD=AC=,∴,∴∠AOE=45°,∠AOD=30°,∴∠CAO=90°-30°=60°,∠BAO=90°-45°=45°,∴∠BAC=45°+60°=105°,同理可求,∠CAB′=60°-45°=15°.∴∠BAC=15°或105°,故选:B.【点睛】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解.7、D【分析】根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.【详解】解:∵第1个图形中圆圈数量5=1+4×1,第2个图形中圆圈数量9=1+4×2,第3个图形中圆圈数量13=1+4×3,……∴第n个图形中圆圈数量为1+4×n=4n+1,当n=7时,圆圈的数量为29,故选:D.【点睛】本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.8、C【分析】本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“罩”相对的面是“手”;故选:C.【点睛】可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯".9、C【分析】根据“上加下减”的原则进行解答即可.【详解】解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.10、C【分析】设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.【详解】解:设火车的长度是x米,根据题意得出:=,解得:x=200,答:火车的长为200米;故选择C.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.二、填空题1、2【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:,合并同类项,得:,系数化成1得:,则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.2、40°,40°度,40度【分析】先根据平角等于180°求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等求解.【详解】解:∵等腰三角形的一个外角等于80°,∴与这个外角相邻的内角是180°-80°=100°,∴100°的内角是顶角,(180°-100°)=40°,∴另两个内角是40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.3、24【分析】分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.【详解】当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.故答案为:24【点睛】本题考查了等腰三角形的性质及周长,要注意分类讨论.4、4【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【详解】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵= ,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴== ,∴MN=DE=×8=4.故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.5、【分析】根据二次根式的性质即可求出答案.【详解】解:原式==故答案为:.【点睛】本题考查二次根式的性质与化简,解题的关键是熟练运用二次根式的除法运算法则,本题属于基础题型.三、解答题1、(1)60(2)见解析(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)【分析】(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.(1)解:本次调查的学生人数为名;(2)解:平均每天读书的时间30—50分钟的人数为名,补全频数直方图如下图:(3)解:份.建议:开卷有益,要养成阅读的好习惯【点睛】本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.2、(1)见解析;(2);(3)【分析】(1)过点D作DE∥AB交BC于E,由圆内接四边形对角互补可以推出∠B+∠A=180°,证得AD∥BC,则四边形ABED是平行四边形,即可得到AB=DE,∠DEC=∠B=∠C,这DE=CD=AB;(2)连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x,由垂径定理可得,∠CEB=∠CEF=∠FCB=90°,则∠FBC+∠F=∠FCE+∠F=90°,可得∠FBC=∠FCE;由勾股定理得,则,解得,则;(3)EF:BG=1:3,即则 解得,则,,,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,分别求出G点坐标为,C点坐标为;A点坐标为然后求出直线CG的解析式为,直线AB的解析式为,即可得到H的坐标为(,),则.【详解】解:(1)如图所示,过点D作DE∥AB交BC于E,∵四边形ABCD是圆O的圆内接四边形,∴∠A+∠C=180°,∵∠B=∠C,∴∠B+∠A=180°,∴AD∥BC,∴四边形ABED是平行四边形,∴AB=DE,∠DEC=∠B=∠C,∴DE=CD=AB;(2)如图所示,连接OC,FC,设BE=CD=2x,OB=OC=OF=r,则OE=BE-BO=2x-r,EF=BF-BE=2r-2x∵CD⊥EB,BF是圆O的直径,∴,∠CEB=∠CEF=∠FCB=90°,∴∠FBC+∠F=∠FCE+∠F=90°,∴∠FBC=∠FCE;∵,∴,∴,解得,∴;(3)∵EF:BG=1:3,即∴ ,即∴,解得,∴,∴,,如图所示,以B为圆心,以BC所在的直线为x轴建立平面直角坐标系,分别过点A作AM⊥BC与M,过点G作GN⊥BC与N,连接FC,∴,∴,,∵,∴,,∴,,∴,,∴G点坐标为(,),C点坐标为(,0);∵,∴,∵∠ABC=∠ECB,∴,∴,∵, ∴,∴,∴,∴A点坐标为(,)设直线CG的解析式为,直线AB的解析式为,∴,,∴,,∴直线CG的解析式为,直线AB的解析式为,联立,解得,∴H的坐标为(,),∴.【点睛】本题主要考查了圆内接四边形的性质,平行四边形的性质与判定,等腰三角形的性质与判定,解直角三角形,一次函数与几何综合,垂径定理,勾股定理,两点距离公式,解题的关键在于能够正确作出辅助线,利用数形结合的思想求解.3、见解析【分析】先证明为等腰直角三角形,得出,再证明,得出,即可证明.【详解】解:,为等腰直角三角形,,又,为等腰直角三角形,,,,,,,平分.【点睛】本题考查了等腰直角三角形、三角形全等的判定及性质、角平分线,解题的关键是掌握三角形的全等的证明.4、【分析】根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可【详解】【点睛】本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.5、见解析【分析】在AC上截取CF=CD,由角平分线的性质和三角形内角和定理可求∠AOC=120°,∠DOC=∠AOE=60°,由“SAS”可证△CDO≌△CFO,可得∠COF=∠COD=60°,由“ASA”可证△AOF≌△AOE,可得AE=AF,即可得结论.【详解】解:证明:如图,在AC上截取CF=CD,∵∠B=60°,∴∠BAC+∠BCA=120°,∵∠BAC、∠BCA的角平分线AD、CE相交于O,∴∠BAD=∠OAC=∠BAC,∠DCE=∠OCA=∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=60°,∴∠AOC=120°,∠DOC=∠AOE=60°,∵CD=CF,∠OCA=∠DCO,CO=CO,∴△CDO≌△CFO(SAS),∴∠COF=∠COD=60°,∴∠AOF=∠EOA=60°,且AO=AO,∠BAD=∠DAC,∴△AOF≌△AOE(ASA),∴AE=AF,∴AC=AF+FC=AE+CD.【点睛】本题考查了全等三角形的判定与性质,添加恰当辅助线构造全等三角形是本题的关键.
相关试卷
这是一份【难点解析】2022年北京市昌平区中考数学三年高频真题汇总 卷(Ⅱ)(含答案及详解),共24页。试卷主要包含了如图,在中,,,,分别在,下列利用等式的性质,错误的是,下列说法正确的是等内容,欢迎下载使用。
这是一份【难点解析】2022年北京市顺义区中考数学第三次模拟试题(含详解),共23页。试卷主要包含了下列计算错误的是,下列图形中,是中心对称图形的是,在平面直角坐标系xOy中,点A,下列说法正确的是等内容,欢迎下载使用。
这是一份【难点解析】2022年北京市昌平区中考数学第二次模拟试题(含答案及解析),共24页。试卷主要包含了下列计算正确的是,已知和是同类项,那么的值是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)