【难点解析】2022年贵州省铜仁市中考数学模拟考试 A卷(含答案及解析)
展开2022年贵州省铜仁市中考数学模拟考试 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、同学们,我们是2022届学生,这个数字2022的相反数是( )
A.2022 B. C. D.
2、已知点与点关于y轴对称,则的值为( )
A.5 B. C. D.
3、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.
A. B. C. D.
4、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
5、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
6、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬 B.奥 C.运 D.会
7、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
8、下列几何体中,俯视图为三角形的是( )
A. B.
C. D.
9、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
10、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
A.点 B.点 C.点 D.点
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,三角形纸片中,点、、分别在边、、上,.将这张纸片沿直线翻折,点与点重合.若比大,则__________.
2、若是方程的一个实数根,则代数式的值为______.
3、如图,OA1B1,A1A2B2,A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.
4、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.
5、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中(),,边上的中线把的周长分成和两部分,求和的长.
2、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且,A、B之间的距离记为或,请回答问题:
(1)直接写出a,b,的值,a=______,b=______,______.
(2)设点P在数轴上对应的数为x,若,则x=______.
(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为-1,动点P表示的数为x.
①若点P在点M、N之间,则______;
②若,则x=______;
③若点P表示的数是-5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?
3、如图,平面直角坐标系中,已知点,,,是的边上任意一点,经过平移后得到△,点的对应点为.
(1)直接写出点,,的坐标.
(2)在图中画出△.
(3)连接,,,求的面积.
(4)连接,若点在轴上,且三角形的面积为8,请直接写出点的坐标.
4、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.
解方程组:.
解:①,得③,第一步,
②③,得,第二步,
.第三步,
将代入①,得.第四步,
所以,原方程组的解为.第五步.
填空:
(1)这种求解二元一次方程组的方法叫做______.
、代入消元法
、加减消元法
(2)第______步开始出现错误,具体错误是______;
(3)直接写出该方程组的正确解:______.
5、如图,在中,D是边的中点,过点B作交的延长线于点E,点N是线段上一点,连接交于点M,且.
(1)若,,求的度数;
(2)求证:.
-参考答案-
一、单选题
1、C
【分析】
根据相反数的定义即可得出答案.
【详解】
解:2022的相反数是-2022.
故选:C.
【点睛】
本题考查了相反数,解题的关键是掌握只有符号不同的两个数互为相反数.
2、A
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
3、B
【分析】
由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.
【详解】
解:由题意可得:跳动个单位长度到
从到再跳动个单位长度,
归纳可得:
结合
所以点从跳动到达跳动了:
个单位长度.
故选B
【点睛】
本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.
4、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
5、C
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
6、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
7、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、C
【分析】
依题意,对各个图形的三视图进行分析,即可;
【详解】
由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;
对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;
对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;
对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;
故选:C
【点睛】
本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;
9、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
10、B
【分析】
结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
【详解】
∵点和,
∴坐标原点的位置如下图:
∵藏宝地点的坐标是
∴藏宝处应为图中的:点
故选:B.
【点睛】
本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
二、填空题
1、
【分析】
由折叠可知,由平角定义得 + =120°,再根据比大,得到 - =,即可解得的值.
【详解】
解:由折叠可知,
∵ + + =180°,
∴ + =120°,
∴ =120°-,
∵比大,
∴ - =,即120°- - =
解得 =,
故答案为:
【点睛】
此题考查折叠的性质、平角的定义及一元一次方程的解法,掌握相应的性质和解法是解答此题的关键.
2、6
【分析】
根据一元二次方程解的意义将m代入求出,进而将方程两边同时除以m进而得出答案.
【详解】
解:∵是方程的一个实数根,
∴,
∴,
∴,
∵
;
故答案为:6.
【点睛】
本题考查了一元二次方程的解的应用,能理解一元二次方程的解的定义是解此题的关键.
3、
【分析】
过、、…分别作x轴的垂线,垂足分别为、、…,故是等腰直角三角形,从而求出的坐标;由点是等腰直角三角形的斜边中点,可以得到的长,然后再设未知数,表示点的坐标,确定,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定,……然后再求和.
【详解】
过、、…分别作x轴的垂线,垂足分别为、、…,
则,
∵是等腰直角三角形,
∴,
∴,
∴,
其斜边的中点在反比例函数,
∴,即,
∴,
∴,
设,则,此时,代入得:,
解得:,即:,
同理:,
,
……,
∴
故答案为:,.
【点睛】
本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.
4、
【分析】
根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
【详解】
解:当y=0时,有x-1=0,
解得:x=1,
∴点A1的坐标为(1,0).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
∴Bn(2n-1,2n-1)(n为正整数),
故答案为:
【点睛】
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
5、0
【分析】
根据一次函数的定义,列出关于m的方程和不等式进行求解即可.
【详解】
解:由题意得,|m-1|=1且m-2≠0,
解得:m=2或m=0且m≠2,
∴m=0.
故答案为:0.
【点睛】
本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.
三、解答题
1、,
【分析】
由题意可得,,由中线的性质得,故可求得,即可求得.
【详解】
由题意知,,
∵,D为BC中点
∴
∴
即
则BC=24,CD=BD=12
则
且28>24符合题意.
【点睛】
本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.
2、
(1)-3,2,5
(2)8或-2
(3)①5;②-3.5或6.5;③2.5秒或10.5秒
【分析】
(1)根据绝对值的非负性,确定a,b的值,利用距离公式,计算即可;
(2)根据|x|=a,则x=a或x=-a,化简计算即可;
(3)①根据数轴上的两点间的距离公式,可得绝对值等于右端数减去左端的数,确定好点位置,表示的数,写出结果即可;
②根据10>5,判定P不在M,N之间,故分点P在M的右边和点P在点N的左侧,两种情形求解即可;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
故分点P在M的右边和点P在点M、点N之间,两种情形求解即可.
(1)
∵,
∴a+3=0,b-2=0,
∴a=-3,b=2,,
故答案为:-3,2,5.
(2)
∵,
∴,
∴x=8或-2;
故答案为:8或-2.
(3)
①点P在点M、N之间,且M表示4,N表示-1,动点P表示的数为x,
∴点P在定N的右侧,在点M的左侧,
∴PN=|x+1|=x+1,PM=|x-4|=4-x,
∴.
故答案为:5;
②根据10>5,判定P不在M,N之间,
当点P在M的右边时,
∴PN=|x+1|=x+1,PM=|x-4|=x-4,
∵,
∴x+1+x-4=10,
解得x=6.5;
当点P在点N的左侧时,
∴PN=|x+1|=-1-x,PM=|x-4|=4-x,
∵,
∴-1-x +4-x =10,
解得x=-3.5;
故答案为:6.5或-3.5;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
当点P在M的右边时,∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=-9+t,
∵PM+PN=8,
∴-4+t-9+t =8,
解得t=10.5;
当点P在点N、点M之间时,
∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=9-t,
∵PM+PN=8,
∴-4+t+9-t =8,
不成立;
当点P在N的左边时,
∴PN=|-5+t+1|=-1-(t-5)=4-t,PM=|-5+t-4|=4-(t-5)=9-t,
∵PM+PN=8,
∴4-t+9-t =8,
解得t=2.5;
综上所述,经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.
【点睛】
本题考查了绝对值的非负性,数轴上两点间的距离,分类思想,绝对值的化简,正确掌握绝对值化简,灵活运用分类思想是解题的关键.
3、
(1),,
(2)见解析
(3)的面积=6
(4)或
【分析】
(1)利用P点和P1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A1,B1,C1的坐标;
(2)利用点A1,B1,C1的坐标描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA1的面积;
(4)设Q(0,t),利用三角形面积公式得到×8×|t−1|=8,然后解方程求出t得到Q点的坐标.
(1)
解:,,;
(2)
解:如图,△为所作;
(3)
解:的面积
,
,
;
(4)
解:设,
,,
,
三角形的面积为8,
,解得或,
点的坐标为或.
【点睛】
本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
4、
(1)B
(2)二;应该等于
(3)
【分析】
(1)②−③消去了x,得到了关于y的一元一次方程,所以这是加减消元法;
(2)第二步开始出现错误,具体错误是−3y−(−4y)应该等于y;
(3)解方程组即可.
(1)
解:②③消去了,得到了关于的一元一次方程,
故答案为:;
(2)
解:第二步开始出现错误,具体错误是应该等于,
故答案为:二;应该等于;
(3)
解:②③得,
将代入①,得:,
原方程组的解为.
故答案为:.
【点睛】
本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
5、
(1)
(2)证明见解析
【分析】
(1)先根据平行线的性质可得,再根据三角形的外角性质即可得;
(2)先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,,从而可得,然后根据等腰三角形的性质、对顶角相等可得,从而可得,最后根据等腰三角形的判定即可得证.
(1)
解:∵,,
∴,
∵,
∴.
(2)
证明:∵,
∴,
∵是边的中点,
∴,
在和中,,
∴,
∴,,
∵,
∴,
∴,
∴,
∴.
【点睛】
本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.
中考专题贵州省铜仁市中考数学模拟专项测试 B卷(含答案及解析): 这是一份中考专题贵州省铜仁市中考数学模拟专项测试 B卷(含答案及解析),共27页。试卷主要包含了如图,点B,如图,在中,,,,则的度数为等内容,欢迎下载使用。
中考数学贵州省铜仁市中考数学历年高频真题专项攻克 B卷(含答案及解析): 这是一份中考数学贵州省铜仁市中考数学历年高频真题专项攻克 B卷(含答案及解析),共29页。试卷主要包含了不等式的最小整数解是,如图,某汽车离开某城市的距离y,下列现象等内容,欢迎下载使用。
真题解析贵州省铜仁市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份真题解析贵州省铜仁市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共32页。试卷主要包含了下列语句中,不正确的是,如图,有三块菜地△ACD等内容,欢迎下载使用。