【难点解析】2022年河北省沧州市中考数学三年真题模拟 卷(Ⅱ)(含答案详解)
展开
这是一份【难点解析】2022年河北省沧州市中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共25页。试卷主要包含了下列命题中,真命题是,如图,在中,,,,分别在,下列说法正确的是等内容,欢迎下载使用。
2022年河北省沧州市中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、要使式子有意义,则( )A. B. C. D.2、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A.200(1 a)2 148 B.200(1 a)2 148C.200(1 2a)2 148 D.200(1 a 2) 1483、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )A.9 B.10 C.12 D.144、下列命题中,真命题是( )A.同位角相等B.有两条边对应相等的等腰三角形全等C.互余的两个角都是锐角D.相等的角是对顶角.5、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+36、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )A. B.2 C.3 D.47、下列说法正确的是( )A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线8、二次函数的图象经过点,,,则,,的大小关系正确的为( )A. B. C. D.9、如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是( ).A.勤 B.洗 C.手 D.戴10、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).A. B.0 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.2、如图,点Q在线段AP上,其中,第一次分别取线段AP和AQ的中点,,得到线段,则线段____________;再分别取线段和的中点,,得到线段;第三次分别取线段和的中点,,得到线段;连续这样操作2021次,则每次的两个中点所形成的所有线段之和____________.3、如果有理数满足,在数轴上点所表示的数是,点所表示的数是;那么在数轴上_______(填点和点中哪个点在哪个点)的右边.4、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.5、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____.三、解答题(5小题,每小题10分,共计50分)1、关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根 x1,x2.(1)求 k 的取值范围;(2)请问是否存在实数 k,使得 x1+x2=1﹣x1x2 成立?若存在,求出 k 的值;若不存在, 说明理由.2、阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如根据以上材料,解答下列问题.(1)分解因式:;(2)求多项式的最小值;(3)已知a,b,c是的三边长,且满足,求的周长.3、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为[A,B]的“三倍距点”,当CB=3CA时,我们称C为[B,A]的“三倍距点”.点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b−5|=0.(1) a=__________,b=__________;(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C所表示的数为______;(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒.当点B为M,N两点的“三倍距点”时,求t的值.4、如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD.求证:AE=FB.5、如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标. -参考答案-一、单选题1、B【分析】根据分式有意义的条件,分母不为0,即可求得答案.【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.2、B【分析】第一次降价后价格为,第二次降价后价格为整理即可.【详解】解:第一次降价后价格为第二次降价后价格为故选B.【点睛】本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.3、C【分析】过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.【详解】解:过点F作MN⊥AD于点M,交BC于点N,连接BD,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC∴△AFE∽△CFB∴ ∵DE=2AE∴AD=3AE=BC∴ ∴,即 又 ∴∴ 故选:C【点睛】本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.4、C【分析】根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.【详解】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;C、互余的两个角都是锐角,本选项说法是真命题;D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、C【分析】根据“上加下减”的原则进行解答即可.【详解】解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.6、B【分析】由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点落在点处,,,又∵,∴,∴,,又为的中点,AE=AE'∴,,即,.故选:B.【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.7、B【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.8、B【分析】先求得对称轴为,开口朝下,进而根据点与的距离越远函数值越小进行判断即可.【详解】解:∵∴对称轴为,,开口向下,离对称轴越远,其函数值越小,,,,, 故选B【点睛】本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.9、C【分析】本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“罩”相对的面是“手”;故选:C.【点睛】可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯".10、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:,∴,,,,∴,故选:C.【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.二、填空题1、3【分析】根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.【详解】解:∵,∴与高相等,∴,又∵,∴,故答案为:3.【点睛】题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.2、5 【分析】根据线段中点的定义可得P1Q1=PQ,P2Q2=P1Q1,P3Q3=P2Q2,根据规律可得答案.【详解】解:∵线段AP和AQ的中点是P1,Q1,∴P1Q1=AP1-AQ1=AP-AQ=PQ=5;∵线段AP1和AQ1的中点P2,Q2,∴P2Q2=AP2-AQ2=AP1-AQ1=P1Q1=PQ,…,∴P1Q1+P2Q2+P3Q3+…+P2021Q2021=PQ+PQ+PQ+…+PQ=(1-)PQ=.故答案为:.【点睛】本题考查了两点间的距离,能够根据线段中点的定义得到其中的规律是解题关键.3、点在点【分析】利用a61<0可知a<0,于是可得a622>0,a2021<0,根据原点左边的数为负数,原点右边的数为正数可得结论.【详解】解:,.,,点在点的右边.故答案为:点在点.【点睛】本题主要考查了有理数的乘方,数轴.利用负数的偶次方是正数,负数的奇数次方是负数的法则是解题的关键.4、【分析】如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.【详解】如图,过点O作,∵四边形ABCD是矩形,∴,,,∵,∴,∴,∴,∴,,∴.故答案为:.【点睛】本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.5、-3【分析】求解的值,然后代入求解即可.【详解】解:由题意知解得∴故答案为:.【点睛】本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.三、解答题1、(1)(2)存在,【分析】(1)根据关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根,≥0,代入计算求出k的取值范围.(2)根据根与系数的关系,,,根据题意列出等式,求出k的值,根据k的值是否在取值范围内做出判断.(1)解:∵关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根根据题意得,解得.(2)解:存在.根据根与系数关系,,∵x1+x2=1﹣x1x2,∴,解得,∵.∴存在实数k=-3,使得x1+x2=1﹣x1x2.【点睛】本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k的取值范围来进取舍.2、(1)(2)(3)12.【分析】(1)先配完全平方,然后利用平方差公式即可.(2)先配方,然后根据求最值即可.(3)对移项、配方,根据平方大于等于0,确定每一项均为0,求解边长,进而得出周长.(1)解:.(2)解:∵∴∴多项式的最小值为.(3)解:∵∴即∴∴,,∴,,∴的周长.【点睛】本题考查了完全平方公式与平方差公式分解因式,代数式的最值,平方等知识.解题的关键在于正确的配方.3、(1)-3,5(2)3(3)当t为或t=3或秒时,点B为M,N两点的“三倍距点”.【分析】(1)根据非负数的性质,即可求得a,b的值;(2)根据“三倍距点”的定义即可求解;(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可求解.(1)解:∵(a+3)2+|b−5|=0,∴a+3=0,b−5=0,∴a=-3,b=5,故答案为:-3,5;(2)解:∵点A所表示的数为-3,点B所表示的数为5,∴AB=5-(-3)=8,∵点C为[A,B]的“三倍距点”,点C在线段AB上,∴CA=3CB,且CA+CB=AB=8,∴CB=2,∴点C所表示的数为5-2=3,故答案为:3;(3)解:根据题意知:点M所表示的数为3t-3,点N所表示的数为t+5,∴BM=,BN=,(t>0),当点B为[M,N]的“三倍距点”时,即BM=3BN,∴,∴或,解得:,而方程,无解;当点B为[N,M]的“三倍距点” 时,即3BM=BN,∴,∴或,解得:或t=3;综上,当t为或t=3或秒时,点B为M,N两点的“三倍距点”.【点睛】本题考查了非负数的性质,一元一次方程的应用、数轴以及绝对值,熟练掌握“三倍距点”的定义是解题的关键.4、证明见解析【分析】由证明再结合已知条件证明从而可得答案.【详解】证明:, EC=BD,AC=FD, 【点睛】本题考查的是全等三角形的判定与性质,掌握“利用证明三角形全等 ”是解本题的关键.5、(1);(2)当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍; (3)或【分析】(1)如图,过作于 先证明 可得 再代入二次函数y=x2+bx﹣2中,再利用待定系数法求解即可;(2)先求解 过作轴交于 再求解直线为: 设 则 再利用 再解方程即可;(3)分两种情况讨论:如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则再求解的解析式,再求解与抛物线的交点坐标即可,如图,同理可得:当平分时,射线与抛物线的交点满足 按同样的方法可得答案.【详解】解:(1)如图,过作于 则 而 而 二次函数y=x2+bx﹣2的图象经过C点,解得: 二次函数的解析式为: (2) 过作轴交于 设直线为 解得: 所以直线为: 设 则 整理得:解得: 当时, 当时, 或 所以当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则 平分 则 同理可得直线的解析式为: 解得:或(不合题意,舍去)如图,同理可得:当平分时,射线与抛物线的交点满足 同理: 直线为: 解得:或(不合题意舍去)【点睛】本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.
相关试卷
这是一份【真题汇总卷】2022年河北省沧州市中考数学真题模拟测评 (A)卷(含答案详解),共24页。试卷主要包含了下列判断错误的是,下列计算正确的是,如图,OM平分,,,则.等内容,欢迎下载使用。
这是一份【难点解析】最新中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共25页。试卷主要包含了要使式子有意义,则,下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份【难点解析】2022年河北省沧州市中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了如图,在中,,,,分别在,下列利用等式的性质,错误的是等内容,欢迎下载使用。