【难点解析】2022年贵州省铜仁市中考数学备考模拟练习 (B)卷(含详解)
展开
这是一份【难点解析】2022年贵州省铜仁市中考数学备考模拟练习 (B)卷(含详解),共21页。试卷主要包含了已知,则∠A的补角等于,的值.等内容,欢迎下载使用。
2022年贵州省铜仁市中考数学备考模拟练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于x的二次三项式在实数范围内不能够因式分解的是( )A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y22、如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于点F,交AB于点G.有下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC,其中正确的结论有( )A.1个 B.2个 C.3个 D.4个3、等腰三角形的一个内角是,则它的一个底角的度数是( )A. B.C.或 D.或4、如图,与位似,点O是位似中心,若,,则( )A.9 B.12 C.16 D.365、已知,则∠A的补角等于( )A. B. C. D.6、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )A.3cm B.4cm C.5cm D.6cm7、的值( ).A. B.2022 C. D.-20228、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).分数252627282930人数351014126A.该组数据的众数是28分 B.该组数据的平均数是28分C.该组数据的中位数是28分 D.超过一半的同学体育测试成绩在平均水平以上9、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A.的 B.祖 C.国 D.我10、下列方程中,解为的方程是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线l1∥l2∥l3,直线l4,l5被直线l1、l2、l3所截,截得的线段分别为AB,BC,DE,EF,若AB=4,BC=6,DE=3,则EF的长是 ______.2、如图,,,有下列结论:①;②;③;④.其中正确的有______.(只填序号)3、如图,在▱ABCD中,AB=8,AD=6,E为AD延长线上一点,且DE=4,连接BE,BE交CD于点F,则CF=_____.4、如图,已知它们分别交直线于点和点,如果,,那么线段的长是_________5、在不等式组的解集中,最大的整数解是______.三、解答题(5小题,每小题10分,共计50分)1、计算:.2、解方程(2x+1)2=x(2x+1).3、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90°得到图形,那么图形称为图形D关于点P的“垂直图形”.已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点.(1)请写出:点的坐标为____________;点的坐标为____________;(2)请求出经过点A、B、的二次函数解析式;(3)请直接写出经过点A、B、的抛物线的表达式为____________.4、在数轴上,表示数m与n的点之间的距离可以表示为|m﹣n|.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题:(1)若|x﹣5|=3,求x的值;(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a﹣b|=6(b>a),点C表示的数为﹣2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.5、阅读材料:在合并同类项中,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.(1)把看成一个整体,合并的结果是 .(2)已知,求的值:(3)已知,,,求的值. -参考答案-一、单选题1、B【分析】利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.【详解】解: 故A不符合题意;令 所以在实数范围内不能够因式分解,故B符合题意; 故C不符合题意;令 所以在实数范围内能够因式分解,故D不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.2、D【分析】①根据角平分线的性质和平行线的性质即可得到结论;②根据角平分线的性质和三角形的面积公式即可求出结论;③根据线段垂直平分线的性质即可得结果;④根据角平分线的性质和平行线的性质即可得到结果.【详解】解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB,③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,又∵PG∥AD,∴∠FPC=∠DCP,∴∠FPC=∠BCP,∴FP=FC,故①②③④都正确.故选:D.【点睛】本题主要考查了角平分线的性质和定义,平行线的性质,垂直平分线的判定,等腰三角形的性质,根据角平分线的性质和平行线的性质解答是解题的关键.3、A【分析】由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.【详解】解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角∴底角的度数为故选A.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.4、D【分析】根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:与位似,,,,,,,故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.5、C【分析】若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.【详解】解: , ∠A的补角为: 故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.6、B【分析】根据中点的定义求出AE和AD,相减即可得到DE.【详解】解:∵D是线段AB的中点,AB=6cm,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.7、B【分析】数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.【详解】解:故选B【点睛】本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.8、B【分析】由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C, 从而可得答案.【详解】解:由分出现次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;该组数据的平均数是 故B符合题意;50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,所以中位数为:(分),故C不符合题意;因为超过平均数的同学有: 所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;故选B【点睛】本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.9、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10、B【分析】把x=5代入各个方程,看看是否相等即可【详解】解:A. 把x=5代入得:左边=8,右边=5,左边≠右边,所以,不是方程的解,故本选项不符合题意;B. 把x=5代入得:左边=3,右边=3,左边=右边,所以,是方程的解,故本选项符合题意;C. 把x=5代入得:左边=15,右边=10,左边≠右边,所以,不是方程的解,故本选项不符合题意;D. 把x=5代入得:左边=7,右边=3,左边≠右边,所以,不是方程的解,故本选项不符合题意;故选:B【点睛】本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键二、填空题1、4.5【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【详解】解:∵l1//l2//l3,∴,∵AB=4,BC=6,DE=3,∴,解得:EF=4.5,故答案为:4.5.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2、①②④【分析】由条件可先证明∠B=∠C,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【详解】解:,,,又,,,,又,,故①②④正确,由条件不能得出,故③不一定正确;故答案为:①②④.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键.3、【分析】根据平行四边形的性质可知,即可证明,推出,由此即可求出CF的长.【详解】∵四边形ABCD是平行四边形,∴,即,∴,,∴,∴.∵, ∴.∵∴,∴.故答案为:.【点睛】本题考查平行四边形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解答本题的关键.4、8【分析】根据平行线分线段成比例定理即可得.【详解】解:,,,,,解得,故答案为:8.【点睛】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题关键.5、4【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.【详解】解: ,解不等式①得,x≥2,解不等式②得, ,∴不等式组的解集为,∴不等式组的最大整数解为4.故答案为:4.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.三、解答题1、【分析】去括号合并同类项即可.【详解】解:原式.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.2、【分析】先移项,再提取公因式 利用因式分解法解方程即可.【详解】解:(2x+1)2=x(2x+1) 即 或 解得:【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“提取公因式分解因式,再化为两个一次方程”是解本题的关键.3、(1)(1,2);(1,0)(2)(3)【分析】(1)根据旋转的性质得出,;(2)利用待定系数法进行求解解析式即可;(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案.(1)解:根据题意作下图:根据旋转的性质得:,,,,故答案是:(1,2);(1,0);(2)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;(3)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;故答案为:.【点睛】本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式.4、(1)x=8或x=2(2)a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8【分析】(1)根据两点间的距离公式和绝对值的意义,可得答案;(2)分类讨论:①C是AB的中点,②当点A为线段BC的中点,③当点B为线段AC的中点,根据线段中点的性质,可得答案.(1)解:因为|x﹣5|=3,所以x﹣5=3或x﹣5=﹣3,解得x=8或x=2;(2)因为|a﹣b|=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.①当点C为线段AB的中点时,如图1所示,.∵点C表示的数为﹣2,∴a=﹣2﹣3=﹣5,b=﹣2+3=1.②当点A为线段BC的中点时,如图2所示,AC=AB=6.∵点C表示的数为﹣2,∴a=﹣2+6=4,b=a+6=10.③当点B为线段AC的中点时,如图3所示,BC=AB=6.∵点C表示的数为﹣2,∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.综上,a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8.【点睛】本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键.5、(1)(2)(3)【分析】(1)将系数相加减即可;(2)将原式变形后整体代入,即可求出答案;(3)将原式变形后,再整体代入计算.(1)解:= =,故答案为:;(2)解:∵∴原式;(3)解:∵,,,∴原式.【点睛】此题考查了整式的加减法,整式的化简求值,正确掌握整式的加减法计算法则及整体代入计算方法是解题的关键.
相关试卷
这是一份【中考专题】贵州省铜仁市中考数学备考模拟练习 (B)卷(含答案及详解),共23页。试卷主要包含了如图,,下列图形是全等图形的是等内容,欢迎下载使用。
这是一份备考练习贵州省铜仁市中考数学真题模拟测评 (A)卷(含详解),共34页。试卷主要包含了如图,有三块菜地△ACD,代数式的意义是等内容,欢迎下载使用。
这是一份【高频真题解析】贵州省铜仁市中考数学备考模拟练习 (B)卷(含答案解析),共23页。