【难点解析】2022年山东省枣庄市中考数学一模试题(含答案及解析)
展开
这是一份【难点解析】2022年山东省枣庄市中考数学一模试题(含答案及解析),共25页。试卷主要包含了下列二次根式中,不能与合并的是,若抛物线的顶点坐标为,在下列运算中,正确的是,已知,则的值为等内容,欢迎下载使用。
2022年山东省枣庄市中考数学一模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )A. B. C. D.2、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°3、在 Rt 中,,如果,那么等于( )A. B. C. D.4、几个同学打算合买一副球拍,每人出7元,则还少4元;每人出8元,就多出3元.他们一共有( )个人.A.6 B.7 C.8 D.95、下列二次根式中,不能与合并的是( )A. B. C. D.6、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )A.0个 B.1个 C.2个 D.无法确定7、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )A. B. C. D.8、在下列运算中,正确的是( )A.a3•a2=a6 B.(ab2)3=a6b6C.(a3)4=a7 D.a4÷a3=a9、已知,则的值为( )A. B. C. D.10、如图,是的外接圆,,则的度数是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线与x轴的两个交点之间的距离为4,则t的值是______.2、某国产品牌的新能源汽车因物美价廉而深受大众喜爱,在某地区的销售量从1月份的10万辆增长到3月份的12.1万辆,则从1月份到3月份的月平均增长率为______.3、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.4、程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,问大、小和尚各有多少人?设大和尚人,小和尚人,根据题意可列方程组为______.5、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.三、解答题(5小题,每小题10分,共计50分)1、已知抛物线y=﹣x2+x.(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.①若n<﹣5,判断y1与y2的大小关系并说明理由;②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.2、如图,是的角平分线,在的延长线上有一点D.满足.求证:.3、如图,是内部的一条射线,是内部的一条射线,是内部的一条射线.(1)如图1,、分别是、的角平分线,已知,,求的度数;(2)如图2,若,,且,求的度数.4、如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC·BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,连接DF(1)求证:AE=AC;(2)设,,求关于的函数关系式及其定义域;(3)当△ABC与△DEF相似时,求边BC的长.5、如图,已知△ABC.(1)请用尺规在图中补充完整以下作图,保留作图痕迹:作∠ACB的角平分线,交AB于点D;作线段CD的垂直平分线,分别交AC于点E,交BC于点F;连接DE,DF;(2)求证:四边形CEDF是菱形. -参考答案-一、单选题1、C【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:列表如下: 郑外加油郑 外,郑加,郑油,郑外郑,外 加,外油,外加郑,加外,加 油,加油郑,油外,油加,油 由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果,所以抽到的汉字恰好是“郑”和“外”的概率为.故选:C.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2、B【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.3、D【分析】直接利用锐角三角函数关系进而表示出AB的长.【详解】解:如图所示:∠A=α,AC=1,cosα=,故AB=.故选:D【点睛】此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键.4、B【分析】依题意,按照一元一次方程定义和实际应用,列方程计算,即可;【详解】由题知,设合买球拍同学的人数为;∴ ,可得:∴故选【点睛】本题主要考查一元一次方程的实际应用,关键在熟练审题和列方程计算;5、B【分析】先把每个选项的二次根式化简,再逐一判断与的被开方数是否相同,被开方数相同则能合并,不相同就不能合并,从而可得答案.【详解】解:能与合并, 故A不符合题意;不能与合并,故B不符合题意;能与合并, 故C不符合题意;能与合并, 故D不符合题意;故选B【点睛】本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.6、C【分析】根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论【详解】解:∵抛物线的顶点坐标为(1,-4),∴ ∴ ∴ 把(1,-4)代入,得, ∴ ∴∴ ∴抛物线与轴有两个交点故选:C【点睛】本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点7、A【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【详解】解:、三视图分别为正方形,三角形,圆,故选项符合题意;、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;、三视图分别为正方形,正方形,正方形,故选项不符合题意;、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;故选:A.【点睛】本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.8、D【分析】由;;,判断各选项的正误即可.【详解】解:A中,错误,故本选项不合题意;B中,错误,故本选项不合题意;C中,错误,故本选项不合题意;D中,正确,故本选项符合题意.故选:D.【点睛】本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.9、A【分析】由设,代入计算求解即可.【详解】解:∵∴设∴故选:A【点睛】本题主要考查发比例的性质,熟练掌握比例的性质是解答本题的关键.10、C【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】解:在中,,;,,;又,,故选:.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.二、填空题1、【分析】设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.【详解】解:设抛物线与x轴的两个交点的横坐标为 是的两根,且 两个交点之间的距离为4, 解得: 经检验:是原方程的根且符合题意,故答案为:【点睛】本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.2、10%【分析】可先表示出2月份的销量,那么2月份的销量×(1+增长率)=12.1,把相应数值代入即可求解.【详解】解:2月份的销量为10×(1+x),3月份的销量在2月份销量的基础上增加x,为10×(1+x)×(1+x),根据题意得,10(1+x)2=121.解得,(舍去), ∴从1月份到3月份的月平均增长率为10%故答案为:10%【点睛】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.3、30【分析】根据科学计算器的使用计算.【详解】解:依题意得:[3×(﹣2)3-1]÷(-)=30,故答案为30.【点睛】利用科学计算器的使用规则把有理数混合运算,再计算.4、【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】解:设大和尚人,小和尚人,共有大小和尚100人,;大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,.联立两方程成方程组得.故答案为:.【点睛】本题考查二元一次方程组的应用,解决此类问题的关键就是认真对题,从题目中提取出等量关系,根据等量关系设未知数列方程组.5、105°或75°【分析】分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.【详解】解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,∵∠B=45°,∠BEF=90°,∴∠CFO=∠BFE=45°,∵∠DCO=60°,∴∠COF=15°∴∠AOC=90°+15°=105°;②如图2,AB⊥CD于G,OA交DC于H,∵∠A=45°,∠AGH=90°,∴∠CHO=∠AHG=45°,∵∠DCO=60°,∴∠AOC=180°-60°-45°=75°;故答案为:105°或75°.【点睛】此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.三、解答题1、(1)直线x=1,(0,0)(2)①y1<y2,理由见解析;②﹣1<n<﹣【分析】(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.(1)∵y=﹣x2+x,∴对称轴为直线x=﹣=1,令x=0,则y=0,∴抛物线与y轴的交点坐标为(0,0);(2)xA﹣xB=(3n+4)﹣(2n﹣1)=n+5,xA﹣1=(3n+4)﹣1=3n+3=3(n+1),xB﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).①当n<﹣5时,xA﹣1<0,xB﹣1<0,xA﹣xB<0.∴A,B两点都在抛物线的对称轴x=1的左侧,且xA<xB,∵抛物线y=﹣x2+x开口向下,∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.∴y1<y2;②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得,∴不等式组无解,若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,由题意可得:,∴﹣1<n<﹣,综上所述:﹣1<n<﹣.【点睛】本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.2、见解析【分析】根据是的角平分线和,可得∠ABE=∠D,从而得到△ABE∽△CDE,进而得到 ,即可求证.【详解】证明:∵是的角平分线,∴∠ABE=∠CBD,∵,∴∠D=∠CBD,∴∠ABE=∠D,∵∠AEB=∠CED,∴△ABE∽△CDE,∴ ,∵,∴.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握有两对角相等的两个三角形相似是解题的关键.3、(1)110°(2)100°【分析】(1)由OM是∠AOB的角平分线,∠AOB=30°,得到,则∠BON=∠MON-∠BOM=55°,再由ON是∠BOC的角平分线,得到∠BOC=2∠BON=110°;(2)设∠AOM=∠NOC=x,则∠AOB=4x,可推出∠BOM=3x,∠BOM:∠BON=3:2,得到∠BON=2x,根据∠AOC=∠AOB+∠BON+∠NOC=7x=140°,得到x=20°,则∠MON=∠BOM+∠BON=5x=100°.(1)解:∵OM是∠AOB的角平分线,∠AOB=30°,∴,∵∠MON=70°,∴∠BON=∠MON-∠BOM=55°,∵ON是∠BOC的角平分线,∴∠BOC=2∠BON=110°;(2)解:设∠AOM=∠NOC=x,则∠AOB=4x,∴∠BOM=∠AOB-∠AOM=3x,∵∠BOM:∠BON=3:2,∴∠BON=2x,∴∠AOC=∠AOB+∠BON+∠NOC=7x=140°,∴x=20°,∴∠MON=∠BOM+∠BON=5x=100°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识.4、(1)证明见解析(2),(3)或【分析】(1)由题意可证得,,即∠EAB=∠CAB,则可得,故AE=AC.(2)可证得,故有,在中由勾股定理有,联立后化简可得出,BC的定义域为.(3)由(1)(2)问可设,,,,若△ABC与△DEF相似时,则有和两种情况,再由对应边成比例列式代入化简即可求得x的值.(1)∵AB2=BC·BD∴又∵∠ACB=∠DAB=90°∴∴∠ADB=∠CAB在Rt△EBA与Rt△ABD中∠AEB=∠DAB=90°,∠ABD=∠ABD∴∴∠ADB=∠EAB∴∠EAB =∠CAB在Rt△EBA与Rt△CAB中∠EAB =∠CABAB=AB∠ACB=∠AEB=90°∴∴AE=AC(2)∵∠ACB=∠FEB=90°,∠F=∠F∴∴∴在中由勾股定理有即代入化简得由(1)问知AC=AE,BE=BC=x则式子左右两边减去得式子左右两边同时除以得∵∴在中由勾股定理有即∴移项、合并同类项得,由图象可知BC的取值范围为.(3)由(1)、(2)问可得,,,当时由(1)问知即则化简为约分得移向,合并同类项得则或(舍)当时由(1)问知即则化简得约分得移项得去括号得移向、合并同类项得则或(舍)综上所述当△ABC与△DEF相似时, BC的长为或.【点睛】本题考查了相似三角形的判定及证明,全等三角形的判定及证明,勾股定理,需熟练掌握相似三角形和全等三角形的判定及性质,本题解题过程中计算过程较复杂繁琐,耐心细致的计算是解题的关键.5、(1)见解析(2)见解析【分析】(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE,DF;(2)根据垂直平分线的性质可得,进而证明即可得,进而根据四边相等的四边形是菱形,即可证明四边形是菱形.(1)如图所示,即为所求,(2)证明:如图,设交于点垂直平分在与中四边形是菱形【点睛】本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.
相关试卷
这是一份2023年山东省枣庄市中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省枣庄市市中区中考数学一模试卷(含答案解析),共21页。试卷主要包含了 如图所示的几何体的左视图是等内容,欢迎下载使用。
这是一份2023年山东省枣庄市山亭区中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。