【难点解析】2022年山东省甄城县中考数学模拟真题练习 卷(Ⅱ)(含答案详解)
展开
这是一份【难点解析】2022年山东省甄城县中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共29页。试卷主要包含了若,则代数式的值为等内容,欢迎下载使用。
2022年山东省甄城县中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )A. B. C. D.2、在实数,,0.1010010001…,,中无理数有( )A.4个 B.3个 C.2个 D.1个3、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.A. B. C. D.4、若,则代数式的值为( )A.6 B.8 C.12 D.165、如图,与位似,点O是位似中心,若,,则( )A.9 B.12 C.16 D.366、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )A. B. C. D.7、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )A.340° B.350° C.360° D.370°8、如图,点,为线段上两点,,且,设,则关于的方程的解是( )A. B. C. D.9、在 Rt 中,,如果,那么等于( )A. B. C. D.10、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线与x轴的两个交点之间的距离为4,则t的值是______.2、最简二次根式3与是同类二次根式,则x的值是 ___.3、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份).4、如图,中.D是的中点.在边上确定点E的位置.使得,那么的长为_________.5、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2).2、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且,A、B之间的距离记为或,请回答问题:(1)直接写出a,b,的值,a=______,b=______,______.(2)设点P在数轴上对应的数为x,若,则x=______.(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为-1,动点P表示的数为x.①若点P在点M、N之间,则______;②若,则x=______;③若点P表示的数是-5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?3、如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接CF并延长交DE延长线于点K.(1)根据题意,补全图形;(2)求∠CKD的度数;(3)请用等式表示线段AB、KF、CK之间的数量关系,并说明理由.4、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上. 图1 图2(1)如图1,求证:;(2)如图2,若,,求的值;(3)如图1,当,,求时,求的值.5、若,则称m与n是关于1的平衡数.(1)8与 是关于1的平衡数;(2)与 (用含x的整式表示)是关于1的平衡数;(3)若,,判断a与b是否是关于1的平衡数,并说明理由. -参考答案-一、单选题1、C【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.2、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:,是整数,属于有理数;是分数,属于有理数;无理数有0.1010010001…,,,共3个.故选:B.【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、B【分析】设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.【详解】解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,依题意得:2x=3(x-2),解得x=6故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.4、D【分析】对已知条件变形为:,然后等式两边再同时平方即可求解.【详解】解:由已知条件可知:,上述等式两边平方得到:,整理得到:,故选:D.【点睛】本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.5、D【分析】根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:与位似,,,,,,,故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.6、B【分析】根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵ADBC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴,故A正确,不符合题意;∵ADBC,∴△DOE∽△BOF,∴,∴,∴,故B错误,符合题意;∵ADBC,∴△AOD∽△COB,∴, ∴,故C正确,不符合题意;∴ ,∴,故D正确,不符合题意;故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.7、B【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD,然后根据,的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC∵,的度数是一个正整数,∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;C、当3∠AOD+∠BOC=360°时,则=,不符合题意;D、当3∠AOD+∠BOC=370°时,则=,不符合题意.故选:B.【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.8、D【分析】先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.【详解】解:,,,,解得,则关于的方程为,解得,故选:D.【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.9、D【分析】直接利用锐角三角函数关系进而表示出AB的长.【详解】解:如图所示:∠A=α,AC=1,cosα=,故AB=.故选:D【点睛】此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键.10、B【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.二、填空题1、【分析】设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.【详解】解:设抛物线与x轴的两个交点的横坐标为 是的两根,且 两个交点之间的距离为4, 解得: 经检验:是原方程的根且符合题意,故答案为:【点睛】本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.2、【分析】由同类二次根式的定义可得再解方程即可.【详解】解:最简二次根式3与是同类二次根式, 解得: 故答案为:【点睛】本题考查的是同类二次根式的含义,掌握“利用同类二次根式的定义求解字母参数的值”是解本题的关键.3、【分析】计算出相邻两个月销售额的变化,然后比较其绝对值的大小.【详解】解:根据图中的信息可得,相邻两个月销售额的变化分别为:、、、,∵,∴该店手机销售额变化最大的相邻两个月是,故答案为:【点睛】此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则.4、##【分析】根据相似三角形的性质可以得到,由D是AC的中点,AC=4,得到,则,由此即可得到答案.【详解】解:∵△ADE∽△ABC,∴,∵D是AC的中点,AC=4,∴,∴,∴,故答案为:.【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的性质是解题的关键.5、(0,-5)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,,∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.三、解答题1、(1)(2)【分析】(1)先把括号内的二次根式化简及除法运算,再计算二次根式的除法运算,最后合并同类二次根式即可;(2)先计算括号内的二次根式的减法运算,再计算二次根式的除法运算,从而可得答案.(1)解: (2)解: 【点睛】本题考查的是二次根式的混合运算,掌握“二次根式的混合运算的运算顺序”是解本题的关键.2、(1)-3,2,5(2)8或-2(3)①5;②-3.5或6.5;③2.5秒或10.5秒【分析】(1)根据绝对值的非负性,确定a,b的值,利用距离公式,计算即可;(2)根据|x|=a,则x=a或x=-a,化简计算即可;(3)①根据数轴上的两点间的距离公式,可得绝对值等于右端数减去左端的数,确定好点位置,表示的数,写出结果即可;②根据10>5,判定P不在M,N之间,故分点P在M的右边和点P在点N的左侧,两种情形求解即可;③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,故分点P在M的右边和点P在点M、点N之间,两种情形求解即可.(1)∵,∴a+3=0,b-2=0,∴a=-3,b=2,,故答案为:-3,2,5.(2)∵,∴,∴x=8或-2;故答案为:8或-2.(3)①点P在点M、N之间,且M表示4,N表示-1,动点P表示的数为x,∴点P在定N的右侧,在点M的左侧,∴PN=|x+1|=x+1,PM=|x-4|=4-x,∴.故答案为:5;②根据10>5,判定P不在M,N之间,当点P在M的右边时,∴PN=|x+1|=x+1,PM=|x-4|=x-4,∵,∴x+1+x-4=10,解得x=6.5;当点P在点N的左侧时,∴PN=|x+1|=-1-x,PM=|x-4|=4-x,∵,∴-1-x +4-x =10,解得x=-3.5;故答案为:6.5或-3.5;③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,当点P在M的右边时,∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=-9+t,∵PM+PN=8,∴-4+t-9+t =8,解得t=10.5;当点P在点N、点M之间时,∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=9-t,∵PM+PN=8,∴-4+t+9-t =8,不成立;当点P在N的左边时,∴PN=|-5+t+1|=-1-(t-5)=4-t,PM=|-5+t-4|=4-(t-5)=9-t,∵PM+PN=8,∴4-t+9-t =8,解得t=2.5;综上所述,经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.【点睛】本题考查了绝对值的非负性,数轴上两点间的距离,分类思想,绝对值的化简,正确掌握绝对值化简,灵活运用分类思想是解题的关键.3、(1)见解析(2)45°(3)KF2+CK2=2AB2,见解析【分析】(1)按题意要求出画出图形即可;(2)过点D作DH⊥CK于点H,由轴对称的性质得出DA=DF,∠ADE=∠FDE,由正方形的性质得出∠ADC=90°,AD=DC,证出∠EDH=45°,由直角三角形的性质可得出结论;(3)由轴对称的性质得出AK=KF,∠AKE=∠CKD=45°,由正方形的性质得出∠B=90°,∠BAC=45°,由等腰直角三角形的性质及勾股定理可得出结论.(1)如图,(2)过点D作DH⊥CK于点H,∵点A关于DE的对称点为点F,∴DA=DF,∠ADE=∠FDE,∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC,∴DF=DC,∵DH⊥CK,∴∠FDH=∠CDH,∠DHF=90°,∴∠ADE+∠FDE+∠FDH+∠CDH=90°,∴∠FDE+∠FDH=45°,即∠EDH=45°,∴∠CKD=90°-∠EDH=45°;(3)线段AB、KF、CK之间的数量关系为:KF2+CK2=2AB2.证明:∵点A关于DE的对称点为点F,∴AK=KF,∠AKE=∠CKD=45°,∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,在Rt△ABC中,∠B=90°,∴AC=AB,在Rt△AKC中,∠AKC=90°,∴AK2+CK2=AC2,∴KF2+CK2=2AB2.【点睛】本题考查了正方形的性质,轴对称的性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4、(1)证明见解析(2)(3)【分析】(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.(1)解:∵四边形EFGH是平行四边形∴∴∵四边形ABCD是平行四边形∴∴在和中∴∴∴∴;(2)解:如图所示,作于M点,设∵四边形和四边形都是平行四边形,∴四边形和四边形都是矩形∴∴∵∴,∴∴∴∵∴由(1)得:∴∴;(3)解:如图所示,过点E作于M点∵四边形ABCD是平行四边形∴∵∴,即∵∴∴∴∴设∵∴∴∴由(1)得:∴∴过点E作,交BD于N∵∴∴∴设∴∴∵∴∵∴∴∵∴∴∴解得:或(舍去)∴由勾股定理得:∴.【点睛】此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.5、(1)-7(2)5-x(3)是,理由见解析【分析】(1)根据平衡数的定义即可求出答案.(2)根据平衡数的定义即可求出答案.(3)根据平衡数的定义以及整式的加减运算法则即可求出答案.(1)∵8+(﹣7)=1,∴8与﹣7是关于1的平衡数,故答案为:-7;(2)∵1﹣(x﹣4)=1﹣x +4=5﹣x,∴5﹣x与x﹣4是关于1的平衡数,故答案为:5﹣x.(3)∵,∴ =1∴a与b是关于1的平衡数.【点睛】本题考查整式的混合运算与化简求值,解题的关键是正确理解平衡数的定义.
相关试卷
这是一份【历年真题】2022年山东省甄城县中考数学真题汇总 卷(Ⅱ)(含答案及详解),共26页。
这是一份2022年山东省甄城县中考数学三年高频真题汇总 卷(Ⅰ)(含详解),共24页。试卷主要包含了下列计算错误的是,在下列运算中,正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年山东省甄城县中考数学模拟考试 A卷(含答案详解),共26页。试卷主要包含了下列方程中,解为的方程是,下列式子运算结果为2a的是.等内容,欢迎下载使用。