【难点解析】2022年山东省潍坊市高密市中考数学三模试题(含答案详解)
展开
这是一份【难点解析】2022年山东省潍坊市高密市中考数学三模试题(含答案详解),共25页。试卷主要包含了如图,是的外接圆,,则的度数是等内容,欢迎下载使用。
2022年山东省潍坊市高密市中考数学三模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )A.冬 B.奥 C.运 D.会2、如图,点是以点为圆心,为直径的半圆上的动点(点不与点,重合),.设弦的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是( )A. B. C. D.3、如图,表示绝对值相等的数的两个点是( )A.点C与点B B.点C与点D C.点A与点B D.点A与点D4、如图,是的外接圆,,则的度数是( )A. B. C. D.5、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )A.3cm B.4cm C.5cm D.6cm6、下列关于x的二次三项式在实数范围内不能够因式分解的是( )A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y27、在 Rt 中,,如果,那么等于( )A. B. C. D.8、下列格点三角形中,与右侧已知格点相似的是( )A. B.C. D.9、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地C.甲行驶小时时货车到达地 D.甲行驶到地需要10、在下列运算中,正确的是( )A.a3•a2=a6 B.(ab2)3=a6b6C.(a3)4=a7 D.a4÷a3=a第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在不等式组的解集中,最大的整数解是______.2、已知某函数的图象经过,两点,下面有四个推断:①若此函数的图象为直线,则此函数的图象与直线平行;②若此函数的图象为双曲线,则也在此函数的图象上;③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.所有合理推断的序号是______.3、底面圆的半径为3,高为4的圆锥的全面积是______.4、抛物线与x轴的两个交点之间的距离为4,则t的值是______.5、一杯饮料,第一次倒去全部的,第二次倒去剩下的 ……如此下去,第八次后杯中剩下的饮料是原来的________.三、解答题(5小题,每小题10分,共计50分)1、阅读下面材料:小钟遇到这样一个问题:如图1,,请画一个,使与互补.小钟是这样思考的:首先通过分析明确射线在的外部,画出示意图,如图2所示;然后通过构造平角找到的补角,如图3所示;进而分析要使与互补,则需;因此,小钟找到了解决问题的方法:反向延长射线得到射线,利用量角器画出的平分线,这样就得到了与互补.(1)请参考小钟的画法;在图4中画出一个,使与互余.并简要介绍你的作法;(2)已知和互余,射线在的内部,且比大,请用表示的度数.2、已知抛物线的顶点为,且过点.(1)求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;②若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围.3、如图,在的网格纸中,点O和点A都是格点,以O为圆心,OA为半径作圆.请仅用无刻度的直尺完成以下画图:(不写画法,保留作图痕迹.)(1)在图①中画⊙O的一个内接正八边形ABCDEFGH;(2)在图②中画⊙O的一个内接正六边形ABCDEF.4、解方程(2x+1)2=x(2x+1).5、如图,数轴上A和B.(1)点A表示 ,点B表示 .(2)点C表示最小的正整数,点D表示的倒数,点E表示,在数轴上描出点C、D、E.(3)将该数轴上点A、B、C、D、E表示的数用“<”连起来: . -参考答案-一、单选题1、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“京”与“奥”是相对面,“冬”与“运”是相对面,“北”与“会”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2、B【分析】由AB为圆的直径,得到∠C=90°,在Rt△ABC中,由勾股定理得到,进而列出△ABC面积的表达式即可求解.【详解】解:∵AB为圆的直径,∴∠C=90°,,,由勾股定理可知:∴,∴此函数不是二次函数,也不是一次函数,排除选项A和选项C,为定值,当时,面积最大,此时,即时,最大,故排除,选.故选:.【点睛】本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.3、D【分析】根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.【详解】解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,则|−3|=|3|,故点A与点D表示的数的绝对值相等,故选:D.【点睛】本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.4、C【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】解:在中,,;,,;又,,故选:.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.5、B【分析】根据中点的定义求出AE和AD,相减即可得到DE.【详解】解:∵D是线段AB的中点,AB=6cm,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.6、B【分析】利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.【详解】解: 故A不符合题意;令 所以在实数范围内不能够因式分解,故B符合题意; 故C不符合题意;令 所以在实数范围内能够因式分解,故D不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.7、D【分析】直接利用锐角三角函数关系进而表示出AB的长.【详解】解:如图所示:∠A=α,AC=1,cosα=,故AB=.故选:D【点睛】此题主要考查了锐角三角函数关系,正确得出边角关系是解题关键.8、A【分析】根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:的三边长分别为:,,,∵,∴为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,,∴,A选项符合题意,D选项中三边长度分别为:,,,∴,故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.9、C【分析】根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.【详解】解:两地的距离为,故A选项正确,不符合题意;故D选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,则即货车返回途中与甲相遇后又经过甲到地故B选项正确,相遇时为第4小时,此时甲行驶了,货车行驶了则货车的速度为则货车到达地所需的时间为即第小时故甲行驶小时时货车到达地故C选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.10、D【分析】由;;,判断各选项的正误即可.【详解】解:A中,错误,故本选项不合题意;B中,错误,故本选项不合题意;C中,错误,故本选项不合题意;D中,正确,故本选项符合题意.故选:D.【点睛】本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.二、填空题1、4【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.【详解】解: ,解不等式①得,x≥2,解不等式②得, ,∴不等式组的解集为,∴不等式组的最大整数解为4.故答案为:4.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.2、①②④【分析】分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.【详解】解:①过,两点的直线的关系式为y=kx+b,则,解得,所以直线的关系式为y=x-1,直线y=x-1与直线y=x平行,因此①正确;②过,两点的双曲线的关系式为,则,所以双曲线的关系式为当时, ∴也在此函数的图象上,故②正确;③若过,两点的抛物线的关系式为y=ax2+bx+c,当它经过原点时,则有 解得, 对称轴x=-,∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,当->时,抛物线与y轴的交点在负半轴,因此③说法不正确;④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,所以对称轴x=-=-=-,因此函数图象对称轴在直线x=左侧,故④正确,综上所述,正确的有①②④,故答案为:①②④.【点睛】本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.3、【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可.【详解】∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的底面积为:,圆锥的侧面积为:,∴圆锥的全面积为:故答案为:.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.4、【分析】设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.【详解】解:设抛物线与x轴的两个交点的横坐标为 是的两根,且 两个交点之间的距离为4, 解得: 经检验:是原方程的根且符合题意,故答案为:【点睛】本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.5、 【分析】采用枚举法,计算几个结果,从结果中寻找变化的规律.【详解】设整杯饮料看成1,列表如下:次数倒出量剩余量第1次第2次第3次第4次故第8次剩下的饮料是原来的.故答案为:.【点睛】本题考查了有理数幂的运算,正确寻找变化的规律是解题的关键.三、解答题1、(1)图见解析,作法见解析(2)或【分析】(1)先通过分析明确射线在的外部,作(或)的垂线,再利用量角器画出(或)的平分线即可得;(2)分①射线在的外部,②射线在的内部两种情况,先根据互余的定义可得,再根据角平分线的定义可得,然后根据角的和差即可得.(1)解:与互余,,,射线在的外部,先作(或)的垂线,再利用量角器画出(或)的平分线,如图所示: 或(2)解:由题意,分以下两种情况:①如图,当射线在的外部时,和互余,,比大,,即,,射线在的内部,,;②如图,当射线在的内部时,射线在的内部,,,和互余,,,比大,,,即,,解得,综上,的度数为或.【点睛】本题考查了作垂线和角平分线、与角平分线有关的计算,较难的是题(2),正确分两种情况讨论是解题关键.2、(1)(2)①②【分析】(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;(2)①平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,,,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;②由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可(1)解:∵的顶点式为∴由题意得解得(舍去),,,∴抛物线的解析式为.(2)解:①平移后的解析式为∴对称轴为直线∴设点坐标到对称轴距离为,点坐标到对称轴距离为∴,∵∴解得∴点坐标为将代入解析式解得∴的值为8.②解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,∴解得 ∵时,均有∴解得∴的取值范围为.【点睛】本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握.3、(1)见解析(2)见解析【分析】(1)在图①中画⊙O的一个内接正八边形ABCDEFGH即可;(2)在图②中画⊙O的一个内接正六边形ABCDEF即可.(1)解:如图,正八边形ABCDEFGH即为所求:(2)解:如图,正六边形ABCDEF即为所求:【点睛】本题考查了作图-应用与设计作图、正多边形和圆,解决本题的关键是准确画图.4、【分析】先移项,再提取公因式 利用因式分解法解方程即可.【详解】解:(2x+1)2=x(2x+1) 即 或 解得:【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“提取公因式分解因式,再化为两个一次方程”是解本题的关键.5、(1),(2)见解析(3)1<<<<【分析】(1)根据数轴直接写出A、B所表示的数即可;(2)根据最小的正整数是1,的倒数是,然后据此在数轴上找到C、D、E即可;(3)将A、B、C、D、E表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A、B表示的数分别是:,.故答案为:,.(2)解:∵最小的正整数是1,的倒数是∴C表示的数是1,D表示的数是,∴如图:数轴上的点C、D、E即为所求.(3)解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:1<<<<.【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.
相关试卷
这是一份2023年山东省潍坊市高密市、临朐县等八县市中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省潍坊市高密市三模中考数学试题,共8页。
这是一份2023年山东省潍坊市高密市中考数学题型综合试卷(含答案),共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。