【难点解析】2022年雷州市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)
展开2022年雷州市中考数学备考真题模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的计算结果是( )
A. B. C. D.
2、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
3、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
4、在数2,-2,,中,最小的数为( )
A.-2 B. C. D.2
5、若,则的值为( )
A. B.8 C. D.
6、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )
A.6 B.8 C.10 D.4.8
7、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
8、如图所示,该几何体的俯视图是
A. B.
C. D.
9、下列计算正确的是( )
A. B.
C. D.
10、下列说法正确的是( )
A.无限小数都是无理数
B.无理数都是无限小数
C.有理数只是有限小数
D.实数可以分为正实数和负实数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甲乙两人到沙漠中探险,他们每天向沙漠深处走30千米,已知一个人最多可以带36天的食物和水,若不准将部分食物存放于途中,其中一个人最远可以深入沙漠______千米.(要求最后两个人都要返回出发点)
2、把化为以度为单位,结果是______.
3、将0.094932用四舍五入法取近似值精确到百分位,其结果是______.
4、当代数式的值为7时,的值为__________.
5、已知x2﹣4x﹣1=0,则代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2=_____.
三、解答题(5小题,每小题10分,共计50分)
1、在整式的加减练习中,已知,小王同学错将“”看成“”算得错误结果为,请你解决以下问题:
(1)求出整式;
(2)求出正确计算结果.
2、在平面直角坐标系中,对于、两点,用以下方式定义两点间的“极大距离”;若,则;若,则.例如:如图,点,则.
(理解定义)
(1)若点、,则______.
(2)在点、、、中,到坐标原点的“极大距离”是2的点是______.(填写所有正确的字母代号)
(深入探索)
(3)已知点,,为坐标原点,求的值.
(拓展延伸)
(4)经过点的一次函数(、是常数,)的图像上是否存在点,使,为坐标原点,直接写出点的个数及对应的的取值范围.
3、(1)解方程:
(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.
4、计算:
(1)
(2)
5、某中学九年级学生共进行了五次体育模拟测试,已知甲、乙两位同学五次模拟测试成绩的均分相同,小明根据甲同学的五次测试成绩绘制了尚不完整的统计表,并给出了乙同学五次测试成绩的方差的计算过程.
甲同学五次体育模拟测试成绩统计表:
次数 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
成绩(分) | 25 | 29 | 27 | a | 30 |
小明将乙同学五次模拟测试成绩直接代入方差公式,计算过程如下:
(分2)
根据上述信息,完成下列问题:
(1)a的值是______;
(2)根据甲、乙两位同学这五次模拟测试成绩,你认为谁的体育成绩更好?并说明理由;
(3)如果甲再测试1次,第六次模拟测试成绩为28分,与前5次相比,甲6次模拟测试成绩的方差将______.(填“变大”“变小”或“不变”)
-参考答案-
一、单选题
1、D
【分析】
原式化为,根据平方差公式进行求解即可.
【详解】
解:
故选D.
【点睛】
本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.
2、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
3、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
4、A
【分析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
解:∵,,
∴-2<<<2,
故选A.
【点睛】
本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.
5、D
【分析】
根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.
【详解】
解:,
,
,,
,,
解得:,,
.
故选:D.
【点睛】
本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.
6、D
【分析】
如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.
【详解】
解:如图所示:
过点作于点,交于点,
过点作于点,
平分,
,
.
在中,,,,,,
,
,
.
即的最小值是4.8,
故选:D.
【点睛】
本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.
7、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
8、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
9、D
【分析】
利用完全平方公式计算即可.
【详解】
解:A、原式=a2+2ab+b2,本选项错误;
B、原式==-a2+2ab-b2,本选项错误;
C、原式=a2−2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项正确,
故选:D.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
10、B
【分析】
根据定义进行判断即可.
【详解】
解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.
B中根据无理数的定义,无理数都是无限小数,故本选项正确.
C中有理数不只是有限小数,例如无限循环小数,故本选项错误;
D中实数可以分为正实数和负实数和0,故本选项错误;
故选:B.
【点睛】
本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.
二、填空题
1、720
【分析】
因为要求最远,所以两人同去耗食物,所以只一人去,另一人中途返回,两人一起出发.12天后两人都只剩24天的食物.乙分给甲12天的食物后独自带着12天的食物返回,也就是甲一共有48天的食物.
【详解】
解:[(36+36÷3)÷2]×30
=24×30
=720(千米).
答:其中一人最远可以深入沙漠720千米.
故答案为:720.
【点睛】
此题考查了有理数的混合运算,生活中方法的最佳选择,首先要想到去多远,都得返回,所以每前进一步,都要想着返回的食物,进而找到最佳答案.
2、35.2°
【分析】
根据角的单位制换算法则求解即可.
【详解】
,
,
,
.
故答案为:.
【点睛】
本题考查了角的单位制换算法则,掌握换算法则是解题关键.
3、0.09
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.094932用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为:0.09.
【点睛】
本题考查了近似数和有效数字,解题的关键是掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
4、2
【分析】
由条件可得,而,从而可求得结果的值.
【详解】
解:∵,
∴,
∴.
故答案为:2.
【点睛】
本题是求代数式的值,关键是由条件求得,运用了整体思想.
5、12
【分析】
化简代数式,将代数式表示成含有的形式,代值求解即可.
【详解】
解:
将代入得代数式的值为12
故答案为:12.
【点睛】
本题考查了完全平方公式、平方差公式以及代数式求值.解题的关键在于正确的化简代数式.
三、解答题
1、
(1)
(2)
【分析】
(1)根据结果减去,进而根据整式的加减运算化简即可求得整式;
(2)按要求计算,根据去括号,合并同类项进行计算化简即可.
(1)
解:∵,
∴
(2)
解:∵,
∴
【点睛】
本题考查了整式的加减运算,正确的去括号是解题的关键.
2、(1);(2);(3)或;(4)当或时,满足条件的点有1个,当时,满足条件的点有2个,当时,不存在满足条件的点,当时,满足条件的点有2个,当时,不存在满足条件的点.
【分析】
(1)根据新定义分别计算 再比较即可得到答案;
(2)根据新定义分别计算点、、、中,到坐标原点的“极大距离”,从而可得答案;
(3)由,先求解 结合 再列绝对值方程即可;
(4)先求解直线的解析式为: 再判断在正方形的边上,且 再结合函数图象进行分类讨论即可.
【详解】
解:(1) 点、,
而
(2) 点
同理可得:、、到原点的“极大距离”为:
故答案为:
(3),
而
解得:或
(4)如图,直线过
则
直线为:
,为坐标原点,
在正方形的边上,且
当直线过时,
则: 解得:
当直线过时,
则: 解得:
结合函数图象可得:当或时,满足条件的点有1个,
当时,满足条件的点有2个,
当时,不存在满足条件的点,
当时,满足条件的点有2个,
当时,不存在满足条件的点,
【点睛】
本题考查的是新定义情境下的一次函数的应用,坐标与图形,理解新定义,结合数形结合解题是解题的关键.
3、(1),;(2)平方步
【分析】
(1)利用配方法,即可求解;
(2)利用扇形的面积公式,即可求解.
【详解】
解:(1),,
配方,得,
∴,
∴,;
(2)解:∵扇形的田,弧长30步,其所在圆的直径是16步,
∴这块田的面积(平方步).
【点睛】
本题主要考查了解一元二次方程,求扇形的面积,熟练掌握一元二次方程的解法,扇形的面积等于 乘以弧长再乘以扇形的半径是解题的关键.
4、
(1)2
(2)-2
【解析】
(1)
解:
=2-5+4+7-6
=2+4+7-5-6
=13-11
=2;
(2)
解:
=-2.
【点睛】
本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.
5、
(1)29
(2)乙的体育成绩更好,理由见解析
(3)变小
【分析】
(1)根据平均分相同,根据乙的方差公式可得乙的平均分为28,则甲的平均分也为28,进而求得的值;
(2)根据甲的成绩计算甲的方差,比较甲乙的方差,方差小的体育成绩更好;
(3)根据第六次的成绩等于平均数,根据方差公式可知方差将变小.
(1)
解:甲、乙两位同学五次模拟测试成绩的均分相同,
乙的方差为:
则平均分为28
所以甲的平均分为28
则
解得
故答案为:29
(2)
乙的成绩更好,理由如下,
乙的成绩较稳定,则乙的体育成绩更好
(3)
甲6次模拟测试成绩的方差将变小
故答案为:变小
【点睛】
本题考查了求方差,平均数,根据方差判断稳定性,掌握求方差的公式是解题的关键.
【真题汇总卷】2022年雷州市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析): 这是一份【真题汇总卷】2022年雷州市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析),共22页。试卷主要包含了下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】2022年雷州市中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇编】2022年雷州市中考数学模拟真题测评 A卷(含答案详解),共20页。试卷主要包含了已知,则代数式的值是等内容,欢迎下载使用。
【难点解析】2022年陕西省宝鸡市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【难点解析】2022年陕西省宝鸡市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共24页。