【难点解析】2022年内蒙古赤峰市中考数学模拟专项测评 A卷(含答案详解)
展开2022年内蒙古赤峰市中考数学模拟专项测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题错误的是( )
A.所有的实数都可用数轴上的点表示 B.两点之间,线段最短
C.无理数包括正无理数、0、负有理数 D.等角的补角相等
2、已知ax2+24x+b=(mx﹣3)2,则a、b、m的值是( )
A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4
C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=4
3、-6的倒数是( )
A.-6 B.6 C.±6 D.
4、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
5、对于反比例函数,下列结论错误的是( )
A.函数图象分布在第一、三象限
B.函数图象经过点(﹣3,﹣2)
C.函数图象在每一象限内,y的值随x值的增大而减小
D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
6、下列计算中正确的是( )
A. B. C. D.
7、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
8、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )
A.0 B.1 C.2 D.3
9、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )
A.4 B.3 C.2 D.1
10、下列各组数据中,能作为直角三角形的三边长的是( )
A.,, B.4,9,11 C.6,15,17 D.7,24,25
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
2、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
3、若则______.
4、已知代数式的值是2,则代数式的值为______.
5、在,,,,中,负数共有______个.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
2、某口罩生产厂家今年9月份生产口罩的数量为200万个,11月份生产口罩的数量达到242万个,且从9月份到11月份,每月的平均增长率都相同.
(1)求每月生产口罩的平均增长率;
(2)按照这个平均增长率,预计12月份这口罩生产厂家生产口罩的数量达到多少万个?
3、一款电脑原售价4500元,元旦商店搞促销,打八折出售,此时每售出一台电脑仍可获利20%,求:
(1)这款电脑的成本价是多少?
(2)若按原价出售,商店所获盈利率是多少?
4、永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%.
(1)甲、乙两种体育器材进价分别为多少元/件?(列方程或方程组解答)
(2)该超市决定购进甲、乙体育器材100件,并且考虑市场需求和资金周转,用于购进这些体育器材的资金不少于6300元,同时又不能超过6430元,则该超市有哪几种进货方案?那种方案获利最大?最大利润是多少元?
5、如图1,CA=CB,CD=CE,,AD、BE交于点H,连CH.
(1)∠AHE=______________.(用表示)
(2)如图2,连接CH,求证:CH平分∠AHE;
(3)如图3,若,P,Q 分别是AD,BE的中点,连接CP,PQ,CQ.请判断三角形PQC的形状,并证明.
-参考答案-
一、单选题
1、C
【分析】
根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项判断即可求解.
【详解】
解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;
B、两点之间,线段最短,该命题正确,故本选项不符合题意;
C、0不是无理数,该命题错误,故本选项符合题意;
D、等角的补角相等,该命题正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键.
2、B
【分析】
将根据完全平方公式展开,进而根据代数式相等即可求解
【详解】
解:∵ ,ax2+24x+b=(mx﹣3)2,
∴
即
故选B
【点睛】
本题考查了完全平方公式,掌握完全平方公式是解题的关键.
3、D
【分析】
根据倒数的定义,即可求解.
【详解】
解:∵-6的倒数是-.
故选:D.
【点睛】
本题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.
4、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
5、D
【分析】
根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.
【详解】
解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;
B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;
C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;
D、∵不能确定x1和x2大于或小于0
∴不能确定y1、y2的大小,故错误;
故选:D.
【点睛】
本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
6、B
【分析】
根据绝对值,合并同类项和乘方法则分别计算即可.
【详解】
解:A、,故选项错误;
B、,故选项正确;
C、不能合并计算,故选项错误;
D、,故选项错误;
故选B.
【点睛】
本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.
7、B
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
8、A
【分析】
一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.
【详解】
∵共有9个1位数,90个2位数,900个3位数,
∴2022-9-90×2=1833,
∴1833÷3=611,
∵此611是继99后的第611个数,
∴此数是710,第三位是0,
故从左往右数第2022位上的数字为0,
故选:A.
【点睛】
此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.
9、C
【分析】
非负整数即指0或正整数,据此进行分析即可.
【详解】
解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,
故选:C.
【点睛】
本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.
10、D
【分析】
由题意直接依据勾股定理的逆定理逐项进行判断即可.
【详解】
解:A.∵,
∴,,为边不能组成直角三角形,故本选项不符合题意;
B.∵42+92≠112,
∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;
C.∵62+152≠172,
∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;
D.∵72+242=252,
∴以7,24,25为边能组成直角三角形,故本选项符合题意;
故选:D.
【点睛】
本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.
二、填空题
1、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
| -4 | -1 | 2 | 3 |
-4 |
|
|
|
|
-1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
2、
【分析】
如图,取的中点,连接,,,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.
【详解】
解:如图,取的中点,连接,,,
将线段MN绕点M顺时针旋转60°得到线段MQ,
,
是等边三角形,
,
是的中点,是的中点
是等边三角形
,
即
在和中,
又
是的中点
点在上
是的中点,是等边三角,
又
垂直平分
即的最小值为
四边形是正方形,且
的最小值为
故答案为:
【点睛】
本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.
3、
【分析】
用含b的式子表示a,再把合分比式中a换成含b的式子约分即可.
【详解】
解:∵,
∴,
∴.
故答案为.
【点睛】
本题考查合分比性质问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.
4、-1
【分析】
把变形为,然后把=2代入计算.
【详解】
解:∵代数式的值是2,
∴=2,
∴==3-4=-1.
故答案为:-1.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.
5、3
【分析】
将各数化简,即可求解.
【详解】
解:∵,,,,,
∴负数有,,,共3个.
故答案为:3
【点睛】
本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.
三、解答题
1、-1
【分析】
根据零指数幂定义、负整数指数幂定义分别化简,并代入三角函数值,计算乘方,最后计算加减法.
【详解】
解:原式
.
【点睛】
此题考查了实数的混合运算,正确掌握运算法则及零指数幂定义、负整数指数幂定义、三角函数值、乘方的计算法则是解题的关键.
2、
(1)10%
(2)266.2万个
【分析】
(1)设每月的平均增长率为x,根据9月份及11月份的生产量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据12月份的生产量=11月份的生产量×(1+增长率),即可求出结论.
(1)
设每月生产口罩的平均增长率为x,根据题意得,
解得:,(不合题意,舍去)
答:每月生产口罩的平均增长率为10%.
(2)
(万个)
答:预计12月份这生产厂家生产口罩的数量达到266.2万个.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
3、
(1)3000元
(2)50%
【分析】
(1)设这款电脑的成本价是x元,根据售价×折扣=成本×(1+利润率)列方程求出x的值即可得答案;
(2)根据利润率=(售价-进价)÷进价×100%列式计算即可得答案.
(1)
设这款电脑的成本价是x元,
∵原售价4500元,打八折出售,此时每售出一台电脑仍可获利20%,
∴4500×80%=x(1+20%),
解得:x=3000.
答:这款电脑的成本价是3000元.
(2)
(4500-3000)÷3000=50%.
答:若按原价出售,商店所获盈利率是50%.
【点睛】
本题考查一元一次方程的应用,正确得出等量关系是解题关键.
4、
(1)甲、乙两种体育器材进价分别为80元/件,40元/件
(2)见解析
【分析】
(1)设甲器材的进价为x元/件,乙器材的进价为y元/件,得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进甲器材z件,根据题意列出不等式组,求出整数解,得到三种方案,分别计算三种方案的利润,比较即可.
(1)
解:设甲器材的进价为x元/件,乙器材的进价为y元/件,
由题意可得:,
解得:,
∴甲、乙两种体育器材进价分别为80元/件,40元/件;
(2)
设购进甲器材z件,
由题意可得:,
解得:,
∴z的取值为58,59,60,
方案一:当z=58时,即甲器材58件,乙器材42件,
利润为:元;
方案二:当z=59时,即甲器材59件,乙器材41件,
利润为:元;
方案三:当z=60时,即甲器材60件,乙器材40件,
利润为:元;
∴方案三的利润最大,最大利润为2280元.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组,由两种商品利润间的关系,找出获利最大的进货方案.
5、(1);(2)证明见详解;(3)为等边三角形,证明见详解.
【分析】
(1)由题意及全等三角形的判定定理可得,再根据全等三角形的性质及三角形内角和外角的性质即可得出结果;
(2)过点C作,,由全等三角形的判定和性质可得:,,利用角平分线的判定即可证明;
(3)根据全等三角形的判定和性质可得:,,根据图形及角之间的关系可得,即可证明结论.
【详解】
解:(1)如图所示:设BC与AD相交于点F,
∵,
∴,即,
在与中,
,
∴,
∴,
∵,
∴,
∴,
故答案为:;
(2)如图所示:过点C作,,
∵,
∴,
在与中,
,
∴,
∴,
∴CH平分;
(3)为等边三角形,理由如下:
∵,
∴,,
∵P、Q为AD、BE中点,
∴,
在与中,
,
∴,
∴,,
∴,
∴为等边三角形.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的判定和性质,三角形内角和定理等,理解题意,熟练掌握,综合运用这些知识点是解题关键.
【真题汇总卷】2022年内蒙古赤峰市中考数学模拟定向训练 B卷(含答案及详解): 这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟定向训练 B卷(含答案及详解),共22页。试卷主要包含了下列二次根式的运算正确的是,若,则值为,已知,则代数式的值是,下列命题错误的是等内容,欢迎下载使用。
【真题汇总卷】2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解): 这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解),共24页。试卷主要包含了下列说法正确的是,若,则的值是等内容,欢迎下载使用。
【真题汇编】2022年内蒙古赤峰市中考数学模拟专项测试 B卷(含答案详解): 这是一份【真题汇编】2022年内蒙古赤峰市中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了有下列说法,下列计算正确的是,一组样本数据为1,下列说法正确的是等内容,欢迎下载使用。