2021_2022学年新教材高中数学课后落实41古典概型的应用含解析北师大版必修第一册练习题
展开古典概型的应用
(建议用时:40分钟)
一、选择题
1.某射手的一次射击中,射中10环,9环,8环的概率分别为0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为( )
A.0.40 B.0.30
C.0.60 D.0.90
A [不够8环的概率为1-0.20-0.30-0.10=0.40.]
2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是( )
A.60% B.30%
C.10% D.50%
D [“甲获胜”与“甲、乙下成和棋”是互斥事件,“甲不输”即“甲获胜或甲、乙下成和棋”,故P(甲不输)=P(甲胜)+P(甲、乙和棋),∴P(甲、乙和棋)=P(甲不输)-P(甲胜)=90%-40%=50%.]
3.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母按字母顺序恰好是相邻的概率为( )
A. B.
C. D.
B [试验的样本空间Ω={AB,AC,AD,AE,BC,BD,BE,CD,CE,DE},共有10 个样本点,其中事件“这2张卡片上的字母按字母顺序恰好是相邻的”包含4个样本点,故所求的概率为=.]
4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )
A. B.
C. D.
C [试验的样本空间Ω={金木,金水,金火,金土,木水,木火,木土,水火,水土,火土},共10个样本点,事件“抽取的两种物质不相克”包含5个样本点,故其概率为=.]
5.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若a=b或a=b-1,就称甲、乙“心有灵犀”,现在任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )
A. B.
C. D.
C [由于甲、乙各记一个数,则样本点总数为6×6=36个,而满足a=b或a=b-1的共有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(2,3),(3,4),(4,5),(5,6),共11个.∴概率P=.]
二、填空题
6.甲、乙两人打乒乓球, 两人打平的概率是, 乙获胜的概率是,则乙不输的概率是________.
[乙不输表示甲、乙打成平局或乙胜,故其概率为P=+=.]
7.从集合A={-3,-2,-1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则k>0,b>0的概率为________.
[根据题意可知,总的样本点(k,b)共有4×3=12个,事件“k>0,b>0”包含的样本点有(2,1),(2,2),共2个,根据古典概型的概率计算公式可知所求概率为=.]
8.如图所示,a,b,c,d,e是处于断开状态的开关,任意闭合其中的两个,则电路接通的概率是________.
[“任意闭合其中的两个开关”所包含的样本点总数是10,“电路接通”包含6个样本点,所以电路接通的概率P=.]
三、解答题
9.学校射击队的某一选手射击一次,其命中环数的概率如表:
命中环数 | 10环 | 9环 | 8环 | 7环 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求该选手射击一次.
(1)命中9环或10环的概率;
(2)至少命中8环的概率;
(3)命中不足8环的概率.
[解] 记“射击一次,命中k环”为事件Ak(k=7,8,9,10).
(1)因为A9与A10互斥,所以P(A9+A10)=P(A9)+P(A10)=0.28+0.32=0.60.
(2)记“至少命中8环”为事件B,B=A8+A9+A10,又A8,A9,A10两两互斥,
所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.
(3)记“命中不足8环”为事件C.则事件C与事件B是对立事件.
所以P(C)=1-P(B)=1-0.78=0.22.
10.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.求:
(1)“抽取的卡片上的数字满足a+b=c”的概率;
(2)“抽取的卡片上的数字a,b,c不完全相同”的概率.
[解] (1)由题意知,试验的样本空间Ω={(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3)},
共27个样本点.
设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A={(1,1,2),(1,2,3),(2,1,3)},共3种.所以P(A)==. 因此,“抽取的卡片上的数字满足a+b=c”的概率为.
(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P()=1-=.
因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.
11.掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为( )
A. B.
C. D.
C [掷一个骰子的试验有6种可能结果,依题意P(A)==,P(B)==,
所以P()=1-P(B)=1-=,因为表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A+)=P(A)+P()=+=.]
12.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则是下列哪个事件的概率( )
A.颜色全同 B.颜色不全同
C.颜色全不同 D.无红球
B [试验的样本空间Ω={黄黄黄,红红红,白白白,红黄黄,黄红黄,黄黄红,白黄黄,黄白黄,黄黄白,黄红红,红黄红,红红黄,白红红,红白红,红红白,黄白白,白黄白,白白黄,红白白,白红白,白白红,黄红白,黄白红,红黄白,红白黄,白红黄,白黄红},共包含27个样本点,事件“颜色全相同”包含3个样本点,则其概率为==1-,所以是事件“颜色不全同”的概率.]
13.从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为,那么所选3人中都是男生的概率为________.
[设A={3人中至少有1名女生},B={3人都为男生},则A、B为对立事件,
∴P(B)=1-P(A)=.]
14.如果事件A与B是互斥事件,且事件A+B发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为________.
0.16 [设P(A)=x,P(B)=3x,∴P(A+B)=P(A)+P(B)=x+3x=0.64.∴P(A)=x=0.16.]
15.先后抛掷两枚大小相同的骰子.
(1)求点数之和为7的概率;
(2)求出现两个4点的概率;
(3)求点数之和能被3整除的概率.
[解] 如图所示,从图中容易看出样本点与所描点一一对应,共36种.
(1)记“点数之和为7”为事件A,从图中可以看出,事件A包含的样本点共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P(A)==.
(2)记“出现两个4点”为事件B,从图中可以看出,事件B包含的样本点只有1个,即(4,4).故P(B)=.
(3)记“点数之和能被3整除”为事件C,则事件C包含的样本点共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P(C)==.