【难点解析】2022年内蒙古赤峰市中考数学真题模拟测评 (A)卷(含答案及详解)
展开2022年内蒙古赤峰市中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不等式组的最小整数解是( )
A.5 B.0 C. D.
2、已知关于的分式方程无解,则的值为( )
A.0 B.0或-8 C.-8 D.0或-8或-4
3、如图,点P是▱ABCD边AD上的一点,E,F分别是BP,CP的中点,已知▱ABCD面积为16,那么△PEF的面积为( )
A.8 B.6 C.4 D.2
4、如图,,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A.EF=BC B. C.∠B=∠E D.AB=DE
5、在数2,-2,,中,最小的数为( )
A.-2 B. C. D.2
6、下列各对数中,相等的一对数是( )
A.与 B.与 C.与 D.与
7、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
8、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
9、若关于x的不等式组无解,则m的取值范围是( )
A. B. C. D.
10、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、近似数精确到____________位.
2、当代数式的值为7时,的值为__________.
3、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
4、一组数据8,2,6,10,5的极差是_________.
5、规定运算*,使x*y=,如果1*2=1,那么3*4=___.
三、解答题(5小题,每小题10分,共计50分)
1、一款电脑原售价4500元,元旦商店搞促销,打八折出售,此时每售出一台电脑仍可获利20%,求:
(1)这款电脑的成本价是多少?
(2)若按原价出售,商店所获盈利率是多少?
2、给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.
(1)关于x的二次多项式3x2+2x-1的特征系数对为________;
(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,-4,4)的特征多项式的乘积;
(3)若有序实数对(p,q,-1)的特征多项式与有序实数对(m,n,-2)的特征多项式的乘积的结果为2x4+x3-10x2-x+2,直接写出(4p-2q-1)(2m-n-1)的值为________.
3、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.
(1)依题意补全图形(借助量角器、刻度尺画图);
(2)写出的依据:
(3)比较线段OC与AC的长短并说明理由:
(4)直接写出∠AOB的度数.
4、一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
5、解方程:
(1);
(2).
-参考答案-
一、单选题
1、C
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、D
【分析】
把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.
【详解】
∵
∴,
∴,
∴,
∴当m+4=0时,方程无解,
故m= -4;
∴当m+4≠0,x=2时,方程无解,
∴
故m=0;
∴当m+4≠0,x= -2时,方程无解,
∴
故m=-8;
∴m的值为0或-8或-4,
故选D.
【点睛】
本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.
3、D
【分析】
根据平行线间的距离处处相等,得到,根据EF是△PBC的中位线,得到△PEF∽△PBC,EF=,得到计算即可.
【详解】
∵点P是▱ABCD边AD上的一点,且 ▱ABCD面积为16,
∴;
∵E,F分别是BP,CP的中点,
∴EF∥BC,EF=,
∴△PEF∽△PBC,
∴,
∴,
故选D.
【点睛】
本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.
4、A
【分析】
利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.
【详解】
解:如图,
所以添加EF=BC,不能判定△ABC≌△DEF,故A符合题意;
延长 交于 添加,
△ABC≌△DEF,故B,C不符合题意;
添加AB=DE,能判定△ABC≌△DEF,故D不符合题意;
故选A
【点睛】
本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.
5、A
【分析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
解:∵,,
∴-2<<<2,
故选A.
【点睛】
本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.
6、C
【分析】
先化简,再比较即可.
【详解】
A. ∵=1,=-1,∴≠,故不符合题意;
B. ∵=-1,=1,∴≠,故不符合题意;
C. ∵=-1,=-1,∴=,故符合题意;
D. ∵=,=,∴≠,故不符合题意;
故选C.
【点睛】
本题考查了有理数的乘方,绝对值,有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.正确化简各数是解答本题的关键.
7、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
8、C
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
9、D
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
10、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
二、填空题
1、百
【分析】
一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.
【详解】
解:∵104是1万,6位万位,0为千位,5为百位,
∴近似数6.05×104精确到百位;
故答案为百.
【点睛】
此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.
2、2
【分析】
由条件可得,而,从而可求得结果的值.
【详解】
解:∵,
∴,
∴.
故答案为:2.
【点睛】
本题是求代数式的值,关键是由条件求得,运用了整体思想.
3、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
| -4 | -1 | 2 | 3 |
-4 |
|
|
|
|
-1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
4、8
【分析】
根据“极差”的定义,求出最大值与最小值的差即可.
【详解】
解:最大值与最小值的差为极差,
所以极差为10-2=8,
故答案为:8.
【点睛】
本题考查了极差,掌握一组数据中最大值与最小值的差即为极差是正确判断的前提.
5、##
【分析】
根据新定义求解A的值,得新定义式为x*y=,然后再将代入代数式求解即可.
【详解】
解:∵1*2=1
∴
解得:A=4
∴x*y=
∴3*4
=
.
故答案为:.
【点睛】
本题考查了新定义.解题的关键在于正确的理解新定义式的含义.
三、解答题
1、
(1)3000元
(2)50%
【分析】
(1)设这款电脑的成本价是x元,根据售价×折扣=成本×(1+利润率)列方程求出x的值即可得答案;
(2)根据利润率=(售价-进价)÷进价×100%列式计算即可得答案.
(1)
设这款电脑的成本价是x元,
∵原售价4500元,打八折出售,此时每售出一台电脑仍可获利20%,
∴4500×80%=x(1+20%),
解得:x=3000.
答:这款电脑的成本价是3000元.
(2)
(4500-3000)÷3000=50%.
答:若按原价出售,商店所获盈利率是50%.
【点睛】
本题考查一元一次方程的应用,正确得出等量关系是解题关键.
2、
(1)(3,2,-1)
(2)
(3)-6
【分析】
(1)根据特征系数对的定义即可解答;
(2)根据特征多项式的定义先写出多项式,然后再根据多项式乘多项式进行计算即可;
(3)根据特征多项式的定义先写出多项式,然后再令x=-2即可得出答案.
(1)
解:关于x的二次多项式3x2+2x-1的特征系数对为 (3,2,-1),
故答案为:(3,2,-1);
(2)
解:∵有序实数对(1,4,4)的特征多项式为:x2+4x+4,
有序实数对(1,-4,4)的特征多项式为:x2-4x+4,
∴(x2+4x+4)(x2-4x+4)
=x4-4x3+4x2+4x3-16x2+16x+4x2-16x+16
=x4-8x2+16;
(3)
解:根据题意得(px2+qx-1)(mx2+nx-2)=2x4+x3-10x2-x+2,
令x=-2,
则(4p-2q-1)(4m-2n-2)=2×16-8-10×4+2+2,
∴(4p-2q-1)(4m-2n-2)=32-8-40+2+2,
∴(4p-2q-1)(4m-2n-2)=-12,
∴(4p-2q-1)(2m-n-1)=-6,
故答案为:-6.
【点睛】
本题考查了多项式乘多项式,新定义问题,给x赋予特殊值-2是解题的关键.
3、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°
【分析】
(1)根据题意画出图形,即可求解;
(2)根据三角形的两边之和大于第三边,即可求解;
(3)利用刻度尺测量得: ,即可求解;
(4)用180°减去80°,再减去30°,即可求解.
【详解】
解:(1)根据题意画出图形,如图所示:
(2)在△AOB中,因为三角形的两边之和大于第三边,
所以;
(3) ,理由如下:利用刻度尺测量得: ,
AC=2cm,
∴;
(4)根据题意得: .
【点睛】
本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.
4、
(1)静水中的速度是16千米/小时,水流速度是4千米/小时
(2)75千米
【分析】
(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.
【小题1】
解:设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,
依题意,得:,
解得:,
答:该轮船在静水中的速度是16千米/小时,水流速度是4千米/小时.
【小题2】
设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,
依题意,得:,
解得:a=75,
答:甲、丙两地相距75千米.
【点睛】
本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.
5、
(1)
(2)
【分析】
(1)先去括号,再移项合并同类项,即可求解;
(2)先去分母,再去括号,然后移项合并同类项,即可求解.
(1)
解:去括号得:
移项合并同类项得:
解得:;
(2)
解:去分母得:
去括号得: ,
移项合并同类项得:
解得:.
【点睛】
本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.
【真题汇总卷】2022年内蒙古赤峰市中考数学模拟定向训练 B卷(含答案及详解): 这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟定向训练 B卷(含答案及详解),共22页。试卷主要包含了下列二次根式的运算正确的是,若,则值为,已知,则代数式的值是,下列命题错误的是等内容,欢迎下载使用。
【真题汇总卷】2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解): 这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解),共24页。试卷主要包含了下列说法正确的是,若,则的值是等内容,欢迎下载使用。
【真题汇编】2022年内蒙古赤峰市中考数学模拟专项测试 B卷(含答案详解): 这是一份【真题汇编】2022年内蒙古赤峰市中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了有下列说法,下列计算正确的是,一组样本数据为1,下列说法正确的是等内容,欢迎下载使用。