【难点解析】2022年乌龙木齐市中考数学模拟真题 (B)卷(含答案及解析)
展开2022年乌龙木齐市中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )
A.60 B.30 C.600 D.300
2、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )
A. B. C. D.
3、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
4、如图,,平分,于点,交于点,若,则的长为( )
A.3 B.4 C.5 D.6
5、下列计算正确的是( )
A. B. C. D.
6、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )
A. B. C. D.
7、的计算结果是( )
A. B. C. D.
8、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
9、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
10、如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第个图案中有2023个白色纸片,则的值为( )
A.672 B.673 C.674 D.675
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,∠AOB=62°,OC平分∠AOB,∠COD=90°,则∠AOD=_____度.
2、若机器人在数轴上某点第一步从向左跳1个单位到,第二步从向右跳2个单位到,第三步从向左跳3个单位到,第四步从向右跳4个单位到,按以上规律跳2018步,机器人落在数轴上的点,且所表示的数恰好是2019,则机器人的初始位置所表示的数是__________.
3、一元二次方程的一次项系数是______.
4、如图,点P是内一点,,,垂足分别为E、F,若,且,则的度数为_________°.
5、某天上午的大课间,小明和小刚站在操场上,同一时刻测得他们的影子长分别是2m和2.2m,已知小明的身高是1.6m,则小刚的身高是______m.
三、解答题(5小题,每小题10分,共计50分)
1、已知过点的抛物线与坐标轴交于点A,C如图所示,连结AC,BC,AB,第一象限内有一动点M在抛物线上运动,过点M作交y轴于点P,当点P在点A上方,且与相似时,点M的坐标为______.
2、已知二次函数的图像为抛物线C.
(1)抛物线C顶点坐标为______;
(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线,请判断抛物线是否经过点,并说明理由;
(3)当时,求该二次函数的函数值y的取值范围.
3、 “119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):
八年级代表队:80,90,90,100,80,90,100,90,100,80;
九年级代表队:90,80,90,90,100,70,100,90,90,100.
(1)填表:
代表队 | 平均数 | 中位数 | 方差 |
八年级代表队 | 90 |
| 60 |
九年级代表队 |
| 90 |
|
(2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;
(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?
4、如图,正三角形ABC内接于,的半径为r,求这个正三角形的周长和面积.
5、解下列不等式(组),并把解集在数轴上表示出来;
(1);
(2);
(3);
(4).
-参考答案-
一、单选题
1、B
【分析】
根据样本的百分比为,用1000乘以3%即可求得答案.
【详解】
解:∵随机抽取100件进行检测,检测出次品3件,
∴估计1000件产品中次品件数是
故选B
【点睛】
本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.
2、B
【分析】
根据等量关系:原价×(1-x)2=现价列方程即可.
【详解】
解:根据题意,得:,
故答案为:B.
【点睛】
本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.
3、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、D
【分析】
过作于,由题意可知,由角角边可证得,故,由直角三角形中30°的角所对的边是斜边的一半可知,再由等角对等边即可知.
【详解】
解:过作于,
,交于点,平分
,
,
,OP=OP
,
,
又,
,
故选:D.
【点睛】
本题考查了角平分线的性质,平行线的性质,全等三角形的判定及性质以及在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.两直线平行,内错角相等.
5、D
【分析】
直接根据合并同类项运算法则进行计算后再判断即可.
【详解】
解:A. ,选项A计算错误,不符合题意;
B. ,选项B计算错误,不符合题意;
C. ,选项C计算错误,不符合题意;
D. ,计算正确,符合题意
故选:D
【点睛】
本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.
6、D
【分析】
设这个物品的价格是x元,根据人数不变列方程即可.
【详解】
解:设这个物品的价格是x元,由题意得
,
故选D.
【点睛】
本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.
7、D
【分析】
原式化为,根据平方差公式进行求解即可.
【详解】
解:
故选D.
【点睛】
本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.
8、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
9、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
10、C
【分析】
根据题目中的图形,可以发现白色纸片的变化规律,然后根据第n个图案中白色纸片2023个,即可解题.
【详解】
解:由图可知,
第1个图案中白色纸片的个数为:1+1×3=4,
第2个图案中白色纸片的个数为:1+2×3=7,
第3个图案中白色纸片的个数为:1+3×3=10,
…
第n个图案中白色纸片的个数为:1+3n,
由题意得,1+3n =2023
解得n=674
故选:C.
【点睛】
本题考查图形的变化,发现题目中白色纸片的变化规律、利用数形结合思想解题是关键.
二、填空题
1、59
【分析】
由题意知∠AOD=∠COD∠AOC,∠AOC=∠AOB;计算求解即可.
【详解】
解:∵OC平分∠AOB
∴∠AOC=∠AOB=
∴∠AOD=∠COD∠AOC=90°31°=59°
故答案为:59.
【点睛】
本题考查了角平分线与角的计算.解题的关键在于正确的表示各角的数量关系.
2、1010
【分析】
由题意知每跳两次完毕向右进1个单位,按此规律跳了2018步后距出发地的距离是1009个单位,且在的右侧,根据所表示的数恰是2019,即可求得初始位置点所表示的数.
【详解】
解:设机器人在数轴上表示a的点开始运动,A0表示a,A1表示a-1,第二步从向右跳2个单位到,A2表示a-1+2= a+1,第三步从向左跳3个单位到,A3表示a+1-3,第四步从向右跳4个单位到,A4表示a+1-3+4= a+2,由题意知每跳两次完毕向右进1个单位,而,
所以电子跳蚤跳2018步后A2018表示的数为a+1009,
又因为表示2019,
∴a+1009=2019,
∴a=1010,
所以表示1010.
故答案为:1010.
【点睛】
本题考查了数轴、列代数式,简单一元一次方程,图形的变化规律,得到每跳动2次相对于原数+1的规律是解题的关键.
3、-5
【分析】
化为一般式解答即可.
【详解】
解:∵,
∴,
∴一次项系数是-5,
故答案为:-5.
【点睛】
此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a是二次项系数,b是一次项系数,c是常数项.
4、40
【分析】
根据角平分线的判定定理,可得 ,再由,可得 ,即可求解.
【详解】
解:∵,,,
∴ ,
∵,,
∴ ,
∴ .
故答案为:40
【点睛】
本题主要考查了角平分线的判定定理,直角三角形两锐角互余,熟练掌握再角的内部,到角两边距离相等的点再角平分线上是解题的关键.
5、1.76
【分析】
首先设小刚的身高是,根据平行投影的特点可得出比例关系,然后可求出小刚的身高.
【详解】
解:设小刚的身高是米,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例;
可得比例关系:,
解可得:,
故答案为:1.76.
【点睛】
本题考查了平行投影特点,解题的关键是掌握在同一时刻,不同物体的物高和影长成比例.
三、解答题
1、或
【分析】
运用待定系数法求出函数关系式,求出点A,C的坐标,得出AC=,BC=,AB=,判断为直角三角形,且, 过点M作MG⊥y轴于G,则∠MGA=90°,设点M的横坐标为x,则MG=x,求出含x的代数式的点M的坐标,再代入二次函数解析式即可.
【详解】
把点B (4,1)代入,得:
∴
抛物线的解析式为
令x=0,得y=3,
∴A(0,3)
令y=0,则
解得,
∴C(3,0)
∴AC=
∵B(4,1)
∴BC=,AB=
∴
∴为直角三角形,且,
过点M作MG⊥y轴于G,则∠MGA=90°,
设点M的横坐标为x,由M在y轴右侧可得x>0,则MG=x,
∵PM⊥MA,∠ACB=90°,
∴∠AMP=∠ACB=90°,
①如图,当∠MAP=∠CBA时,则△MAP∽△CBA,
∴
同理可得,
∴
∴AG=MG=x,则M(x,3+x),
把M(x,3+x)代入y=x2-x+3,得
x2-x+3=3+x,
解得,x1=0(舍去),x2=,
∴3+x=3+
∴M(,);
②如图,当∠MAP=∠CAB时,则△MAP∽△CAB,
∴
同理可得,AG=3MG=3x,
则P(x,3+3x),
把P(x,3+3x)代入y=x2-x+3,
得x2-x+3=3+3x,
解得,x1=0(舍去),x2=11,
∴M(11,36),
综上,点M的坐标为(11,36)或(,)
【点睛】
本题考查了待定系数法求解析式,相似三角形的判定与性质等等知识,解题关键是注意分类讨论思想在解题过程中的运用.
2、
(1)
(2)不经过,说明见解析
(3)
【分析】
(1)一般解析式化为顶点式,进行求解即可.
(2)由题意得出平移后的函数表达式,将点横坐标2代入,求纵坐标的值并与3比较,相等则抛物线过该点.
(3)先判断该函数图像开口向上,对称轴在所求自变量的范围内,可求得函数值的最小值,然后将代入解析式求解,取最大的函数值,进而得出取值范围.
(1)
解:化成顶点式为
∴顶点坐标为
故答案为:.
(2)
解:由题意知抛物线的解析式为
将代入解析式解得
∴不经过点.
(3)
解:∵对称轴直线在中
∴最小的函数值
将代入解析式得
将代入解析式得
∵
∴函数值的取值范围为.
【点睛】
本题考查了二次函数值顶点式,图像的平移,函数值的取值范围等知识.解题的关键在于正确的表示出函数解析式.
3、
(1)90,90,80
(2)八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)180名
【分析】
(1)根据中位数的定义,平均数,方差的公式进行计算即可;
(2)根据平均数相等时,方差的意义进行分析即可;
(3)600乘以满分的人数所占的比例即可.
(1)
解:∵八年级代表队:80,80,80,90,90,90,90,100,100,100;
∴八年级代表队中位数为90
九年级代表队的平均数为90,
九年级代表队的方差为80
故答案为:
(2)
八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)
(名).
答:九年级大约有180名学生可以获得奖状
【点睛】
本题考查了求中位数,平均数,方差,样本估计总体,根据方差作决策,掌握以上知识是解题的关键.
4、周长为.面积为.
【分析】
连接OB,OA,延长AO交BC于D,根据等边三角形性质得出AD⊥BC,BD=CD=BC,∠OBD=30°,求出OD,根据勾股定理求出BD,即可求出BC,BC的三倍即为周长,根据三角形的面积公式即可求出面积.
【详解】
解:连接OB,OA,延长AO交BC于D,如图所示:
∵正△ABC外接圆是⊙O,
∴AD⊥BC,BD=CD=BC,∠OBD=∠ABC=×60°=30°,
∴OD=OB=r,
由勾股定理得:BD=,
即三角形边长为BC=2BD=r,AD=AO+OD=r+r=,
则△ABC的周长=3BC=3×r=3r;
△ABC的面积=BC×AD=×r×=.
∴正三角形ABC周长为;正三角形ABC面积为.
【点睛】
本题考查了等边三角形、等腰三角形的性质、勾股定理、三角形的外接圆、三角形的面积等知识点;关键是能正确作辅助线后求出BD的长.
5、
(1),数轴见解析
(2),数轴见解析
(3)-1<x≤2,数轴见解析
(4)x≤-10,数轴见解析
【分析】
(1)去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;
(2)去分母,去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;
(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;
(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;
【小题1】
解:,
去括号得:,
移项合并得:,
解得:,
在数轴上表示为:
【小题2】
,
去分母得:,
去括号得:,
移项合并得:,
在数轴上表示为:
【小题3】
,
由①得:x>-1,
由②得:x≤2,
不等式组的解集为:-1<x≤2,
在数轴上表示为:
【小题4】
,
由①得:x<-4,
由②得:x≤-10,
不等式组的解集为:x≤-10,
在数轴上表示为:
【点睛】
此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键.
【真题汇编】2022年乌龙木齐市中考数学模拟真题 (B)卷(精选): 这是一份【真题汇编】2022年乌龙木齐市中考数学模拟真题 (B)卷(精选),共20页。试卷主要包含了下列二次根式的运算正确的是,下列各点在反比例的图象上的是,已知线段AB等内容,欢迎下载使用。
【真题汇编】2022年乌龙木齐市中考数学模拟真题测评 A卷(精选): 这是一份【真题汇编】2022年乌龙木齐市中考数学模拟真题测评 A卷(精选),共17页。试卷主要包含了在中,,,则,多项式去括号,得等内容,欢迎下载使用。
【难点解析】中考数学模拟真题 (B)卷(含答案详解): 这是一份【难点解析】中考数学模拟真题 (B)卷(含答案详解),共22页。试卷主要包含了下列说法中,不正确的是,下列利用等式的性质,错误的是,下列方程组中,二元一次方程组有,二次函数y=,如图,OM平分,,,则.,下列命题中,是真命题的是等内容,欢迎下载使用。