【难点解析】2022年中考数学备考模拟练习 (B)卷(含详解)
展开2022年中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1<x<2,以下4个结论:①ab<0;②2a+b=0;③3a+c>0;④a+b<am2+bm(m<−1);其中正确的结论个数为( )
A.4 B.3 C.2 D.1
2、在中,,,则( )
A. B. C. D.
3、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
4、如图所示,该几何体的俯视图是
A. B.
C. D.
5、已知4个数:,,,,其中正数的个数有( )
A.1 B. C.3 D.4
6、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为( )
A. B. C. D.
7、对于反比例函数,下列结论错误的是( )
A.函数图象分布在第一、三象限
B.函数图象经过点(﹣3,﹣2)
C.函数图象在每一象限内,y的值随x值的增大而减小
D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
8、一组样本数据为1、2、3、3、6,下列说法错误的是( )
A.平均数是3 B.中位数是3 C.方差是3 D.众数是3
9、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )
A. B. C. D.
10、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )
A.3×106 B.3×107 C.3×108 D.0.3×108
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把有理数a代入得到,称为第一次操作,再将作为a的值代入得到,称为第二次操作,依此类推……,若,则经过第2022次操作后得到的是______.
2、2.25的倒数是__________.
3、如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为,连接AF、CF、AC.若,的面积为S,则______.
4、如图,在△ABC中,AB=AC,∠A=20°,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE为________°.
5、-3.6的绝对值是______.
三、解答题(5小题,每小题10分,共计50分)
1、某公司销售部门2021年上半年完成的销售额如下表.
月份 | 一月份 | 二月份 | 三月份 | 四月份 | 五月份 | 六月份 |
销售额(万元) | -1.6 | -2.5 | +2.4 | +1.2 | -0.7 | +1.8 |
(正号表示销售额比上个月上升,负号表示销售额比上个月下降)
(1)上半年哪个月的销售额最高?每个月销售额最低?销售额最高的比销售额最低的高多少?
(2)这家公司2021年6月的销售额与去年年底相比是上升了还是下降了?上升或下降了多少?
2、如图,长方形ABCD中,AB>AD,把长方形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)图中有 个等腰三角形;(请直接填空,不需要证明)
(2)求证:△ADE≌△CED;
(3)请证明点F在线段AC的垂直平分线上.
3、如图1,在△ABC中,AB = AC =10,tanB =,点D为BC 边上的动点(点D不与点B ,C重合).以D为顶点作∠ADE =∠B ,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.
(1)当D运动到BC的中点时,直接写出AF的长;
(2)求证:10CE=BD∙CD;
(3)点D在运动过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.
4、计算:
(1)
(2)
5、解方程
(1)
(2)
-参考答案-
一、单选题
1、B
【分析】
由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.
【详解】
解:由图象可知,a>0,b<0,∴ab<0,①正确;
因与x轴交于点(−1,0)和(x,0),且1<x<2,所以对称轴为直线−<1,
∴−b<2a,∴2a+b>0,②错误;
由图象可知x=−1,y=a−b+c=0,又2a>−b,2a+a+c>−b+a+c,
∴3a+c>0,③正确;
由增减性可知m<−1,am2+bm+c>0,
当x=1时,a+b+c<0,即a+b<am2+bm,④正确.
综上,正确的有①③④,共3个,
故选:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.
2、B
【分析】
作出图形,设BC=3k,AB=5k,利用勾股定理列式求出AC,再根据锐角的余切即可得解.
【详解】
解:如图,
,
∴
∴设BC=3k,AB=5k,
由勾股定理得,
∴.
故选:B.
【点睛】
本题考查了求三角函数值,利用“设k法”表示出三角形的三边求解更加简便.
3、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
4、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
5、C
【分析】
化简后根据正数的定义判断即可.
【详解】
解:=1是正数,=2是正数,=1.5是正数,=-9是负数,
故选C.
【点睛】
本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.
6、C
【分析】
如图,连接OC,OD,可知是等边三角形,,,,计算求解即可.
【详解】
解:如图连接OC,OD
∵
∴是等边三角形
∴
由题意知,
故选C.
【点睛】
本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.
7、D
【分析】
根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.
【详解】
解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;
B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;
C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;
D、∵不能确定x1和x2大于或小于0
∴不能确定y1、y2的大小,故错误;
故选:D.
【点睛】
本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
8、C
【分析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
A、平均数为,故此选项不符合题意;
B、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;
C、方差为,故此选项符合题意;
D、众数为3,故此选项不符合题意.
故选:C.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
9、B
【分析】
根据等量关系:原价×(1-x)2=现价列方程即可.
【详解】
解:根据题意,得:,
故答案为:B.
【点睛】
本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.
10、B
【分析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
解:30000000=3×107.
故选:B.
【点睛】
本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
二、填空题
1、-10
【分析】
先确定第1次操作,;第2次操作,;第3次操作,;第4次操作,;第5次操作,;第6次操作,;…,观察得到第4次操作后,偶数次操作结果为;奇数次操作结果为,据此解答即可.
【详解】
第1次操作,;
第2次操作,;
第3次操作,;
第4次操作,;
第5次操作,;
第6次操作,;
第7次操作,;
…
第2020次操作,.
故答案为:.
【点睛】
本题考查了绝对值和探索规律.含绝对值的有理数减法,解题的关键是先计算,再观察结果是按照什么规律变化的探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
2、
【分析】
2.25的倒数为,计算求解即可.
【详解】
解:由题意知,2.25的倒数为
故答案为:.
【点睛】
本题考查了倒数.解题的关键在于理解倒数的定义.
3、50
【分析】
根据题意得:AB=BC=CD=AD=10,FG=BG=b,则CG=b+10,可得,即可求解.
【详解】
解:根据题意得:AB=BC=CD=AD=10,FG=BG=b,则CG=b+10,
∴
.
故答案为:50
【点睛】
本题主要考查了整式混合运算的应用,根据题意得到是解题的关键.
4、60
【分析】
先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.
【详解】
解:∵等腰△ABC中,AB=AC,∠A=20°,
∴∠ABC==80°,
∵DE是线段AB垂直平分线的交点,
∴AE=BE,
∴∠A=∠ABE=20°,
∴∠CBE=∠ABC-∠ABE=80°-20°=60°.
故答案为:60.
【点睛】
本题主要考查了线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
5、3.6
【分析】
根据绝对值的性质解答.
【详解】
解:-3.6的绝对值是3.6,
故答案为:3.6.
【点睛】
此题考查了求一个数的绝对值,正确掌握绝对值的性质是解题的关键.
三、解答题
1、
(1)六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元
(2)这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【分析】
(1)由2021年上半年的销售额,利用表格即可确定出1月-6月的销售额,可确定出最高与最低销售额;求出销售额最高与最低之差即可;
(2)求出2021年6月的销售额与2020年12月的销售额之差即可做出判断.
(1)
解:设2020年12月完成销售额为a万元.
根据题意得:2021年上半年的销售额分别为:
a-1.6;a-1.6-2.5=a-4.1;a-4.1+2.4=a-1.7;a-1.7+1.2=a-0.5;a-0.5-0.7=a-1.2;a-1.2+1.8=a+0.6,
a+0.6-( a-4.1)=4.7(万元);
则六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元;
(2)
解:由(1)2020年12月完成销售额为a万元,2021年6月的销售额为a+0.6万元,
a+0.6-a=0.6>0,
所以这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【点睛】
本题考查了列代数式,整式的加减,以及正数与负数,弄清题意是解本题的关键.
2、
(1)2
(2)证明见解析
(3)证明见解析
【分析】
(1)由题意知CE=BC=AD,∠EAC=∠BAC=∠DCA,有△ACF为等腰三角形;在和中,,知,有∠DEA=∠EDC,有△DEF为等腰三角形;
(2)在和中,,可得;
(3)由于,,,有,,故,进而可得出结果.
(1)
解:有△ACF和△DEF共2个等腰三角形
证明如下:由折叠的性质可知CE=BC=AD,∠EAC=∠BAC
∵
∴∠EAC=∠DCA
∴△ACF为等腰三角形;
在和中
∵
∴
∴∠DEA=∠EDC
∴△DEF为等腰三角形;
故答案为:2.
(2)
证明:∵四边形ABCD是长方形
∴,
由折叠的性质可得:,
∴,
在和中,
∴.
(3)
证明:由(1)得
∴,即
∴
又∵
∴
∴
∴点F在线段AC的垂直平分线上.
【点睛】
本题考查了几何图形折叠的性质,矩形,等腰三角形的判定与性质,三角形全等,垂直平分线等知识.解题的关键在于灵活运用知识.
3、
(1)
(2)见解析
(3)存在,
【分析】
(1)根据题意作出图形,进而,根据tanB =,,求得,;
(2)证明,直接得证;
(3)作于M,于H,于N.则,进而可得四边形AMHN为矩形,证明,求得,当时,由于点D不与点C重合,可知为等腰三角形,进而求得.
(1)
如图,当D运动到BC的中点时,
,
,
,
又
tanB =,
设,则
(2)
证明:∵
∴
∵,;∴
∴
∴
∵
∴
(3)
点D在运动过程中,存在某个位置,使得.
理由:作于M,于H,于N.
则
∴四边形AMHN为矩形,
∴,,
∵,
∴可设,,
∴可得
∵,∴,
∴.
∵,,
∴,
∵,
∴
∴,
∴
∴,
∴,
当时,由于点D不与点C重合,可知为等腰三角形,
∵,
∴,
∴
∴点D在运动过程中,存在某个位置,使得.此时.
【点睛】
本题考查了等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,正切的定义,掌握相似三角形的性质与判定是解题的关键.
4、
(1)4
(2)-16
【分析】
(1)直接利用有理数的加减法计算即可;
(2)利用求一个数的立方根、算术平方根、有理数的乘方按顺序进行计算即可.
(1)
解:原式=,
=4;
(2)
解:原式,
.
【点睛】
本题考查了有理数的加减、算术平方根、立方根,有理数的乘方,解题的关键是掌握相应的运算法则.
5、
(1)x=4
(2)x=2
【解析】
(1)
解:移项得:-5x+6x=1+3,
合并得:x=4;
(2)
解:去分母得:2(x+1)-(x-2)=6,
去括号得:2x+2-x+2=6,
移项合并得:x=2.
【点睛】
本题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.
【难点解析】2022年西安市长安区中考数学备考模拟练习 (B)卷(含详解): 这是一份【难点解析】2022年西安市长安区中考数学备考模拟练习 (B)卷(含详解),共21页。试卷主要包含了下列各对数中,相等的一对数是,已知和是同类项,那么的值是等内容,欢迎下载使用。
【难点解析】最新中考数学备考模拟练习 (B)卷(精选): 这是一份【难点解析】最新中考数学备考模拟练习 (B)卷(精选),共32页。试卷主要包含了下列各组图形中一定是相似形的是,下列各对数中,相等的一对数是,一组样本数据为1,下列二次根式的运算正确的是等内容,欢迎下载使用。
【难点解析】2022年吉林省长春市中考数学备考模拟练习 (B)卷(含答案及详解): 这是一份【难点解析】2022年吉林省长春市中考数学备考模拟练习 (B)卷(含答案及详解),共26页。试卷主要包含了下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。