![【难点解析】最新中考数学第二次模拟试题(含答案及解析)第1页](http://img-preview.51jiaoxi.com/2/3/12676984/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】最新中考数学第二次模拟试题(含答案及解析)第2页](http://img-preview.51jiaoxi.com/2/3/12676984/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】最新中考数学第二次模拟试题(含答案及解析)第3页](http://img-preview.51jiaoxi.com/2/3/12676984/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】最新中考数学第二次模拟试题(含答案及解析)
展开
这是一份【难点解析】最新中考数学第二次模拟试题(含答案及解析),共26页。试卷主要包含了若抛物线的顶点坐标为,有理数等内容,欢迎下载使用。
最新中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为( )A. B. C. D.2、如图所示,,,,,则等于( )A. B. C. D.3、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )A.22° B.24° C.26° D.28°4、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )A.① B.② C.③ D.②③5、下列几何体中,俯视图为三角形的是( )A. B.C. D.6、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )A.0个 B.1个 C.2个 D.无法确定7、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点8、有理数、、、在数轴上对应的点的位置如图所示,则下列结论错误的是( )A. B. C. D.9、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+310、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形纸片中,点、、分别在边、、上,.将这张纸片沿直线翻折,点与点重合.若比大,则__________.2、给出下列程序:若输入的值为1时,输出值为1;若输入的值为时,输出值为;则当输入的值为8时,输出值为______.3、已知圆弧所在圆的半径为36cm.所对的圆心角为60°,则该弧的长度为______cm.4、已知n<5,且关于x的方程x2﹣2x﹣2n=0两根都是整数,则n=___.5、如图点O在直线上,与互为余角,则的大小为________.三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图象经过两点.(1)求a和b的值;(2)在坐标系中画出该二次函数的图象.2、综合与探究如图,直线与轴,轴分别交于,两点,抛物线经过,两点,与轴的另一个交点为(点在点的左侧),抛物线的顶点为点.抛物线的对称轴与轴交于点.(1)求抛物线的表达式及顶点的坐标;(2)点M是线段上一动点,连接并延长交轴交于点,当时,求点的坐标;(3)点是该抛物线上的一动点,设点的横坐标为,试判断是否存在这样的点,使,若存在,请直接写出的值;若不存在,请说明理由.3、如图,已知,.(1)请用尺规作图法,作的垂直平分线,垂足为,交于.(不要求写作法,保留作图痕迹)(2)若线段,,求线段的长.4、在数轴上,表示数m与n的点之间的距离可以表示为|m﹣n|.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题:(1)若|x﹣5|=3,求x的值;(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a﹣b|=6(b>a),点C表示的数为﹣2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.5、(数学阅读)图1是由若干个小圆圈推成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共推了n层.将图1倒置后与原图1排成图2的形状,这样图2中每一行的圆圈数都是.我们可以利用“倒序相加法”算出图1中所有圆圈的个数为:.(问题解决)(1)按照图1的规则摆放到第12层时,求共用了多少个圆圈;(2)按照图1的规则摆放到第19层,每个圆圈都按图3的方式填上一串连续的正整数:1,2,3,4,……,则第19层从左边数第二个圆圈中的数字是______. -参考答案-一、单选题1、A【分析】解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组 ,再解方程组即可得到答案.【详解】解:如图,连接,交于 过作于 由对折可得: 设 解得: 或 (舍去) 故选A【点睛】本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.2、C【分析】根据“SSS”证明△AOC≌△BOD即可求解.【详解】解:在△AOC和△BOD中,∴△AOC≌△BOD,∴∠C=∠D,∵,∴=30°,故选C.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3、B【分析】由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.【详解】解:∵,∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,由尺规作图痕迹可知:MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=52°,∴∠CAD=∠BAC-∠DAB=76°-52°=24°.故选:B.【点睛】本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.4、B【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上, 当b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;当b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,∴a有两个相同的值,∴点M的个数为1,故②正确;当b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B.【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.5、C【分析】依题意,对各个图形的三视图进行分析,即可;【详解】由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;故选:C【点睛】本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;6、C【分析】根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论【详解】解:∵抛物线的顶点坐标为(1,-4),∴ ∴ ∴ 把(1,-4)代入,得, ∴ ∴∴ ∴抛物线与轴有两个交点故选:C【点睛】本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点7、B【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.8、C【分析】根据有理数a,b,c,d在数轴上对应的点的位置,逐个进行判断即可.【详解】解:由有理数a,b,c,d在数轴上对应的点的位置可得,-4<d<-3<-1<c<0<1<b<2<3<a<4,∴,,,,故选:C.【点睛】本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.9、B【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;再向上平移5个单位长度,得:y=(x﹣3)2+5,故选:B.【点睛】本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.10、D【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.二、填空题1、【分析】由折叠可知,由平角定义得 + =120°,再根据比大,得到 - =,即可解得的值.【详解】解:由折叠可知,∵ + + =180°,∴ + =120°,∴ =120°-,∵比大,∴ - =,即120°- - =解得 =,故答案为:【点睛】此题考查折叠的性质、平角的定义及一元一次方程的解法,掌握相应的性质和解法是解答此题的关键.2、3【分析】设输出的值为y,根据程序可得计算法则:,根据待定系数法确定k,b的值,再将8代入即可.【详解】解:设输出的值为,根据图示可得计算法则为,若输入的值为1时,输出值为1;若输入的值为时,输出值为,,解得,,当时,,3、【分析】根据弧长公式直接计算即可.【详解】∵圆的半径为36cm.所对的圆心角为60°,∴弧的长度为:=12π,故答案为:12π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.4、或或或【分析】先利用方程有两根求解结合已知条件可得再求解方程两根为结合两根为整数,可得为完全平方数,从而可得答案.【详解】解:关于x的方程x2﹣2x﹣2n=0有两根, x2﹣2x﹣2n=0, 而两个根为整数,则为完全平方数,或或或 解得:或或或 故答案为:或或或【点睛】本题考查的是一元二次方程根的判别式,利用公式法解一元二次方程,熟练的解一元二次方程是解本题的关键.5、90°【分析】利用互余的定义,平角的定义,角的差计算即可.【详解】∵与互为余角,∴∠AOC+∠BOD=90°,∴∠COD=180°-90°=90°,故答案为:90°.【点睛】本题考查了互余即两个角的和是90°,角的和差,熟练记住互余的定义,灵活运用角的和差是解题的关键.三、解答题1、(1)(2)见解析【分析】(1)利用待定系数法将两点代入抛物线求解即可得;(2)根据(1)中结论确定函数解析式,求出与x,y轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象.(1)解:∵二次函数的图象经过两点,∴, 解得: .(2)解:由(1)可得:函数解析式为:,当时,,解得:,,∴抛物线与x轴的交点坐标为:,,抛物线与y轴的交点坐标为:,对称轴为:,根据这些点及对称轴在直角坐标系中作图如下.【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键.2、(1),;(2);(3)存在,的值为4或【分析】(1)分别求出两点坐标代入抛物线即可求得a、c的值,将抛物线化为顶点式,即可得顶点的坐标;(2)作轴于点,可证∽,从而可得,代入,,可求得,代入可得,从而可得点的坐标;(3)由,可得,由两点坐标可得,所以,过点P作PQ⊥AB,分点P在x轴上方和下方两种情况即可求解.【详解】(1)当时,得,∴点的坐标为(0,4),当时,得,解得:,∴点的坐标为(6,0),将两点坐标代入,得 解,得∴抛物线线的表达式为∵∴顶点坐标为.(2)作轴于点,∵,,∴∽.∴.∴.∴当时,∴.∴点的坐标为.(3)∵,,∴,∵点的坐标为(6,0),点的坐标为(0,4),∴,∴,过点P作PQ⊥AB,当点P在x轴上方时,解得m=4符合题意,当点P在x轴下方时,解得m=8符合题意,∴存在,的值为4或.【点睛】本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.3、(1)见解析.(2)线段的长为5.【分析】(1)利用垂直平分线的作图方法直接画图即可.(2)由垂直平分线的性质可知:,设,在中,利用勾股定理列出关于x的方程,并进行求解即可.(1)(1)分别以点A、C为圆心,以大于长画弧,连接两组弧的交点,与AC交于点E,与BC交于点D,如下所示:(2)(2)解:连接AD,如下图所示:由垂直平分线的性质可知:设,在中,由勾股定理可知: 解得: 故AD的长为5.【点睛】本题主要是考查了垂直平分线的画法及性质、勾股定理求解边长,熟练掌握垂直平分线的作法,以及利用勾股定理列方程求边长,是解决该题的关键.4、(1)x=8或x=2(2)a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8【分析】(1)根据两点间的距离公式和绝对值的意义,可得答案;(2)分类讨论:①C是AB的中点,②当点A为线段BC的中点,③当点B为线段AC的中点,根据线段中点的性质,可得答案.(1)解:因为|x﹣5|=3,所以x﹣5=3或x﹣5=﹣3,解得x=8或x=2;(2)因为|a﹣b|=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.①当点C为线段AB的中点时,如图1所示,.∵点C表示的数为﹣2,∴a=﹣2﹣3=﹣5,b=﹣2+3=1.②当点A为线段BC的中点时,如图2所示,AC=AB=6.∵点C表示的数为﹣2,∴a=﹣2+6=4,b=a+6=10.③当点B为线段AC的中点时,如图3所示,BC=AB=6.∵点C表示的数为﹣2,∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.综上,a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8.【点睛】本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键.5、(1)78个圆圈(2)173【分析】(1)将代入公式求解即可得;(2)先计算当时的值,然后根据题意,第19层从左边数第二个圆圈中的数字即可得出.(1)解:图1中所有圆圈的个数为:,当时,,答:摆放到第12层时,求共用了78个圆圈;(2)先计算当时,,第19层从左边数第二个圆圈中的数字为:,故答案为:173.【点睛】题目主要考查有理数的加法及找规律求代数式的值,理解题意,运用代数式求值是解题关键.
相关试卷
这是一份【难点解析】最新中考数学模拟定向训练 B卷(含答案及解析),共25页。试卷主要包含了已知ax2+24x+b=,一组样本数据为1,下列说法正确的是,下列说法正确的有等内容,欢迎下载使用。
这是一份【难点解析】最新中考数学模拟真题 (B)卷(含答案及解析),共25页。试卷主要包含了下列二次根式中,最简二次根式是等内容,欢迎下载使用。
这是一份【难点解析】最新中考数学模拟定向训练 B卷(含答案详解),共22页。试卷主要包含了下列方程是一元二次方程的是,如图所示,由A到B有①等内容,欢迎下载使用。