![【难点解析】2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解)第1页](http://img-preview.51jiaoxi.com/2/3/12676989/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解)第2页](http://img-preview.51jiaoxi.com/2/3/12676989/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解)第3页](http://img-preview.51jiaoxi.com/2/3/12676989/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解)
展开
这是一份【难点解析】2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ)(含答案及详解),共22页。试卷主要包含了若+,下列利用等式的性质,错误的是,下列说法正确的有等内容,欢迎下载使用。
2022年四川省遂宁市中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)2、下列关于整式的说法错误的是( )A.单项式的系数是-1 B.单项式的次数是3C.多项式是二次三项式 D.单项式与ba是同类项3、若,则的值为( )A. B.8 C. D.4、若+(3y+4)2=0,则yx的值为( )A. B.- C.- D.5、在2,1,0,-1这四个数中,比0小的数是( )A.2 B.0 C.1 D.-16、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )A. B. C. D.7、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )A.cm B.2cm C.1cm D.2cm8、下列利用等式的性质,错误的是( )A.由,得到 B.由,得到C.由,得到 D.由,得到9、下列说法正确的有( ) ①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若AC=BC,则点C是线段AB的中点; ⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个10、下列各组数据中,能作为直角三角形的三边长的是( )A.,, B.4,9,11 C.6,15,17 D.7,24,25第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x为不等式组的解,则的值为______.2、如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=________________cm.3、比较大小:______(填“>”,“<”,“=”)4、已知是方程的解,则a的值是______.5、已知某数的相反数是﹣2,那么该数的倒数是 __________________.三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G(1)当AE⊥BE时,求正方形CDEF的面积;(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;(3)当AG=AE时,求CD的长.2、先化简,再求值:(1),其中;(2),其中,.3、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.例如,如图已知点,,点关于点的对称平移点为.(1)已知点,,①点关于点的对称平移点为________(直接写出答案).②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.4、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.5、(1)计算:.(2)用适当的方法解一元二次方程:. -参考答案-一、单选题1、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.2、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A、单项式的系数是-1,说法正确,不符合题意;B、单项式的次数是3,说法正确,不符合题意;C、多项式是三次二项式,说法错误,符合题意;D、单项式与ba是同类项,说法正确,不符合题意;故选C.【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.3、D【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.【详解】解:,,,,,,解得:,,.故选:D.【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.4、A【分析】根据绝对值的非负性及偶次方的非负性得到x-2=0,3y+4=0,求出x、y的值代入计算即可【详解】解:∵+(3y+4)2=0,∴x-2=0,3y+4=0,∴x=2,y=,∴,故选:A.【点睛】此题考查了已知字母的值求代数式的值,正确掌握绝对值的非负性及偶次方的非负性是解题的关键.5、D【分析】根据正数大于零,零大于负数,即可求解.【详解】解:在2,1,0,-1这四个数中,比0小的数是-1故选:D【点睛】本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.6、D【分析】旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解【详解】解:旋转阴影部分,如图,∴该点取自阴影部分的概率是故选:D【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.7、B【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.8、B【分析】根据等式的性质逐项分析即可.【详解】A.由,两边都加1,得到,正确;B.由,当c≠0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B.【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.9、B【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.10、D【分析】由题意直接依据勾股定理的逆定理逐项进行判断即可.【详解】解:A.∵,∴,,为边不能组成直角三角形,故本选项不符合题意;B.∵42+92≠112,∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;C.∵62+152≠172,∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;D.∵72+242=252,∴以7,24,25为边能组成直角三角形,故本选项符合题意;故选:D.【点睛】本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.二、填空题1、2【分析】解不等式组得到x的范围,再根据绝对值的性质化简.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:,∴===2故答案为:2.【点睛】本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.2、【分析】首先根据线段的和差求出BC的长,再利用线段的中点可得CD.【详解】∵AC=12cm,AB=5cm,∴BC=AC﹣AB=7cm,∵点D是BC的中点,∴CD=BC=cm.故答案为:.【点睛】本题考查线段的和差,掌握线段中点的定义是解题关键.3、<【分析】根据绝对值的性质去绝对值符号后,再比较大小即可.【详解】解:,,,.故答案为:.【点睛】此题主要考查了有理数大小比较,解题的关键是熟记有理数大小比较的方法.4、4【分析】把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.【详解】解:把代入方程得:,去括号得:,系数化为1得:,故答案为:4.【点睛】本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.5、【分析】根据相反数与倒数的概念可得答案.【详解】解:∵某数的相反数是﹣2,∴这个数为2,∴该数的倒数是.故答案为:.【点睛】本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.三、解答题1、(1)(2)(3)【分析】(1)证明△ADE≌△BFE(ASA),推出AD=BF,构建方程求出CD即可.(2)过点A作AM⊥BE于M,想办法求出AB,AM即可解决问题.(3)如图3中,延长CA到N,使得AN=AG.设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,在Rt△ADE中,利用勾股定理求出x即可解决问题.(1)如图1中,∵四边形ABCD是正方形,∴CD=DE=EF=CF,∠CDE=∠DEF=∠F=90°,∵AE⊥BE,∴∠AEB=∠DEF=90°,∴∠AED=∠BEF,∵∠ADE=∠F=90°,DE=FE,∴△ADE≌△BFE(ASA),∴AD=BF,∴AD=5+CF=5+CD,∵AC=CD+AD=12,∴CD+5+CD=12,∴CD=,∴正方形CDEF的面积为.(2)如图2中,∵∠ABG=∠EBH,∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,∵∠BCG=∠ACB,∠CBG=∠BAG,∴△CBG∽△CAB,∴=CG•CA,∴CG=,∴BG===,∴AG=AC﹣CG=,过点A作AM⊥BE于M,∵∠BCG=∠AMG=90°,∠CGB=∠AGM,∴∠GAM=∠CBG,∴cos∠GAM=cos∠CBG=,∴AM=,∵AB==13,∴sin∠ABM=.(3)如图3中,延长CA到N,使得AN=AG.∵AE=AG=AN,∴∠GEN=90°,由(1)可知,△NDE≌△BFR,∴ND=BF,设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,∴AN=AE=5+x﹣(12﹣x)=2x﹣7,在Rt△ADE中,∵,∴,∴x=或(舍弃),∴CD=.【点睛】本题考查了正方形的性质,勾股定理,三角形的全等,三角形相似的性质和判定,一元二次方程的解法,三角函数的正弦值,熟练掌握勾股定理,准确解一元二次方程,正弦值是解题的关键.2、(1);(2);【分析】(1)先根据合并同类项化简,进而代数式求值即可;(2)先去括号,再合并同类项,进而将的值代入求解即可.(1)当时,原式(2)当,时,原式【点睛】本题考查了整式的加减中的化简求值,正确的计算是解题的关键.3、(1)①(6,4);②(3,-2)(2)的值为【分析】(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.(1)解:①如图1中,点关于点的对称平移点为.故答案为:.②若点为点关于点的对称平移点,则点的坐标为.故答案为:;(2)解:如图2中,当时,四边形是梯形,,,,,或(舍弃),当时,同法可得,综上所述,的值为.【点睛】本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.4、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得: ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB中,因为三角形的两边之和大于第三边,所以;(3) ,理由如下:利用刻度尺测量得: ,AC=2cm,∴;(4)根据题意得: .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.5、(1)2+;(2),【分析】(1)先计算零指数幂,分母有理化,负指数幂,特殊三角函数值,再合并同类项即可;(2)因式分解法解一元二次方程.【详解】(1)解:,,,;(2)解:原方程分解因式得, 或,解得,.【点睛】本题考查含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法,掌握含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法.
相关试卷
这是一份【真题汇总卷】2022年四川省遂宁市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共23页。试卷主要包含了下列利用等式的性质,错误的是,下列说法正确的是等内容,欢迎下载使用。
这是一份【难点解析】2022年四川省遂宁市中考数学真题模拟测评 (A)卷(含详解),共23页。试卷主要包含了已知ax2+24x+b=,下列说法正确的有等内容,欢迎下载使用。
这是一份【难点解析】中考数学模拟真题 (B)卷(含答案详解),共22页。试卷主要包含了下列说法中,不正确的是,下列利用等式的性质,错误的是,下列方程组中,二元一次方程组有,二次函数y=,如图,OM平分,,,则.,下列命题中,是真命题的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)