


【真题汇编】2022年北京市房山区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)
展开2022年北京市房山区中考数学备考真题模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P(4,﹣3)关于原点对称的点的坐标是( )
A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(4,3)
2、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )
A. B.2 C.3 D.4
3、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.
A.3 B.2 C.1 D.0
4、如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是( )
A. B. C. D.
5、若,则的值是( )
A. B.0 C.1 D.2022
6、在0,,1.333…,,3.14中,有理数的个数有( )
A.1个 B.2个 C.3个 D.4个
7、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
8、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )
A.个 B.个 C.个 D.个
9、已知4个数:,,,,其中正数的个数有( )
A.1 B. C.3 D.4
10、要使式子有意义,则( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,连接CD,将△BCD沿直线CD翻折得到△ECD,连接AE.若AC=6,BC=8,则△ADE的面积为____.
2、若等腰三角形的一个外角等于80°,则与它不相邻的两个内角的度数分别是 ___;
3、方程(2x﹣1)2=25的解是 ___;
4、如图,东方明珠塔是上海的地标建筑之一,它的总高度是468米,塔身自下而上共有3个球体,其中第2个球体的位置恰好是总高度的黄金分割点,且它到地面的距离大于到塔顶的距离,则第2个球体到地面的距离是米_________.(结果保留根号).
5、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数.”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦.请你动动脑,该问题中乌鸦有_________只.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,点A、O、B依次在直线MN上,如图2,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN保持不动,设旋转时间为ts.
(1)当t=3时,∠AOB= ;
(2)在运动过程中,当射线OB与射线OA垂直时,求t的值;
(3)在旋转过程中,是否存在这样的t,使得射线OB、射线OA和射线OM,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由.
2、如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.
(1)求原正方形空地的边长;
(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.
3、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?
4、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:
(1)本次调查的学生人数为___________.
(2)补全频数直方图.
(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议.
5、如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.
(1)求证:四边形CDEF是菱形;
(2)若BC=3,CD=5,求AG的长.
-参考答案-
一、单选题
1、B
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数,进而得出答案.
【详解】
解:点P(4,-3)关于原点对称的点的坐标是(-4,3),
故选:B.
【点睛】
此题主要考查了关于原点对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
2、B
【分析】
由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.
【详解】
解:沿折叠,使点落在点处,
,,
又∵,
∴,
∴,
,
又为的中点,AE=AE'
∴,
,
即,
.
故选:B.
【点睛】
本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.
3、A
【分析】
①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;
②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;
③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.
【详解】
解:①如下图,连接AM,延长DE交BF于J,
∵四边形ABCD是正方形,
∴AB=AD,∠DAE=∠BAF=90°,
由题意可得AE=AF,
∴△BAF≌△DAE(SAS),
∴∠ABF=∠ADE,
∵∠ADE+∠AED=90°,∠AED=∠BEJ,
∴∠BEJ+∠EBJ=90°,
∴∠BJE=90°,
∴DJ⊥BF,
由翻折可知:EA=EM,DM=DA,
∴DE垂直平分线段AM,
∴BF∥AM,故①正确;
②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,
在MD上取一点J,使得ME=MJ,连接EJ,
则由题意可得∠M=90°,
∴∠MEJ=∠MJE=45°,
∴∠JED=∠JDE=22.5°,
∴EJ=JD,
设AE=EM=MJ=x,则EJ=JD=x,
则有x+x =4,
∴x=4﹣4,
∴AE=4﹣4,故②正确;
③如下图,连接CF,
当EF=CE时,设AE=AF=m,
则在△BCE中,有2m²=4²+(4-m)2,
∴m=4﹣4或-4﹣4 (舍弃),
∴AE=4﹣4,故③正确;
故选A.
【点睛】
本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
4、B
【分析】
取的中点,连接,交于点,则,,由,得,由,得,,则,,从而解决问题.
【详解】
解:矩形中,点,点分别是,的中点,
,,,
取的中点,连接,交于点,如图,
则是的中位线,
,,
,,
,
,
,
,
,
,,
,,
,,
,
,
故选:B.
【点睛】
本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出和的长是解题的关键.
5、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
6、D
【分析】
根据有理数的定义:整数和分数统称为有理数,进行求解即可.
【详解】
解:0是整数,是有理数;
是无限不循环小数,不是有理数;
是分数,是有理数;
是分数,是有理数;
3.14是有限小数,是分数,是有理数,
故选D.
【点睛】
此题考查有理数的定义,熟记定义并运用解题是关键.
7、C
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
8、A
【分析】
过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.
【详解】
解:过点A作AD⊥BC与D,
∵BD=4,,
∴AD=BD,
∵,
∴,
∴BC=7,
∴DC=BC-BD=7-4=3,
∴①主视图中正确;
∴左视图矩形的面积为3×6=,
∴②正确;
∴tanC,
∴③正确;
其中正确的个数为为3个.
故选择A.
【点睛】
本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.
9、C
【分析】
化简后根据正数的定义判断即可.
【详解】
解:=1是正数,=2是正数,=1.5是正数,=-9是负数,
故选C.
【点睛】
本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.
10、B
【分析】
根据分式有意义的条件,分母不为0,即可求得答案.
【详解】
解:要使式子有意义,
则
故选B
【点睛】
本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.
二、填空题
1、6.72
【分析】
连接BE,延长CD交BE与点H,作CF⊥AB,垂足为F.首先证明DC垂直平分线段BE,△ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在Rt△ABE中,利用勾股定理即可解决问题.
【详解】
解:如图,连接BE,延长CD交BE与点H,作CF⊥AB,垂足为F.
∵∠ACB=90°,AC=6,BC=8.
∴AB==10,
∵D是AB的中点,
∴AD=BD=CD=5,
∵S△ABC=AC•BC=AB•CF,
∴×6×8=×10×CF,解得CF=4.8.
∵将△BCD沿直线CD翻折得到△ECD,
∴BC=CE,BD=DE,
∴CH⊥BE,BH=HE.
∵AD=DB=DE,
∴△ABE为直角三角形,∠AEB=90°,
∴S△ECD=S△ACD,
∴DC•HE=AD•CF,
∵DC=AD,
∴HE=CF=4.8.
∴BE=2EH=9.6.
∵∠AEB=90°,
∴AE==2.8.
∴S△ADE=EH•AE=×2.8×4.8=6.72.
故答案为:6.72.
【点睛】
本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型.
2、40°,40°度,40度
【分析】
先根据平角等于180°求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等求解.
【详解】
解:∵等腰三角形的一个外角等于80°,
∴与这个外角相邻的内角是180°-80°=100°,
∴100°的内角是顶角,
(180°-100°)=40°,
∴另两个内角是40°,40°.
故答案为:40°,40°.
【点睛】
本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
3、x1=3,x2=-2
【分析】
通过直接开平方求得2x-1=±5,然后通过移项、合并同类项,化未知数系数为1解方程.
【详解】
解:由原方程开平方,得
2x-1=±5,
则x=,
解得,x1=3,x2=-2.
故答案是:x1=3,x2=-2.
【点睛】
本题考查了解一元二次方程--直接开平方法.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
4、
【分析】
根据黄金分割点的概念,结合图形可知第2个球体到塔底部的距离是较长线段,进一步计算出长度.
【详解】
解:设第2个球体到塔底部的距离为,
根据题意得:,
解得:,
第2个球体到塔底部的距离为米.
故答案为:.
【点睛】
本题考查了黄金分割的概念,解题的关键是掌握如果线段上一点把线段分割为两条线段,,当,即时,则称点是线段的黄金分割点.
5、20
【分析】
设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案.
【详解】
解:设乌鸦x只,树y棵.依题意可列方程组:
.
解得,
所以,乌鸦有20只
故答案为:20.
【点睛】
此题主要考查了二元一次方程组的应用,正确得出方程组是解题关键.
三、解答题
1、
(1)150°
(2)9或27或45;
(3)t为、、、、
【分析】
(1)求出∠AOM及∠BON的度数可得答案;
(2)分两种情况:①当时,②当时,根据OA与OB重合前,OA与OB重合后,列方程求解;
(3)射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:
①OA分∠BOM为2:3时,②OA分∠BOM为3:2时,③OB分∠AOM为2:3时,④OB分∠AOM为3:2时,⑤OM分∠AOB为2:3时,⑥ OB分∠AOM为2:3时,⑦OB分∠AOM为3:2时,⑧ OA分∠BOM为3:2时,⑨ OA分∠BOM为2:3时,列方程求解并讨论是否符合题意.
(1)
解:当t=3时,∠AOM=12°,∠BON=18°,
∴∠AOB=180°-∠AOM-∠BON=150°,
故答案为:150°;
(2)
解:分两种情况:
①当时,
当OA与OB重合前,,得t=9;
当OA与OB重合后,,得t=27;
②当时,
当OA与OB重合前,,得t=45;
当OA与OB重合后,,得t=63(舍去);
故t的值为9或27或45;
(3)
解:射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:
①OA分∠BOM为2:3时,
∴4t:(180-4t-6t)=2:3,
解得:t=;
②OA分∠BOM为3:2时,
∴4t:(180-4t-6t)=3:2,
解得:t=;
③OB分∠AOM为2:3时,
∵,
∴,
得t=;
④OB分∠AOM为3:2时,
∴,
得t=;
⑤OM分∠AOB为2:3时,
∴,
得t=54,
此时>180°,故舍去;
⑥ OB分∠AOM为2:3时,
∴,
得,
此时,故舍去;
⑦OB分∠AOM为3:2时,
∴,
得,
此时,故舍去;
⑧ OA分∠BOM为3:2时,
∴,
得,
⑨ OA分∠BOM为2:3时,
∴,
得t=67.5(舍去)
综上,当t的值分别为、、、、时,射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分.
【点睛】
此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键.
2、
(1)30m
(2)1m
【分析】
(1)设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.
【小题1】
解:设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,
依题意得:(x-4)(x-5)=650,
整理得:x2-9x-630=0,
解得:x1=30,x2=-21(不合题意,舍去).
答:原正方形空地的边长为30m.
【小题2】
设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,
依题意得:(30-y)(30-1-y)=812,
整理得:y2-59y+58=0,
解得:y1=1,y2=58(不合题意,舍去).
答:小道的宽度为1m.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
3、50
【分析】
设购进x盏节能灯,列一元一次方程解答.
【详解】
解:设购进x盏节能灯,由题意得
25x+160=30(x-3)
解得x=50,
答:该商店共购进了50盏节能灯.
【点睛】
此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.
4、
(1)60
(2)见解析
(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)
【分析】
(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;
(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;
(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.
(1)
解:本次调查的学生人数为名;
(2)
解:平均每天读书的时间30—50分钟的人数为名,
补全频数直方图如下图:
(3)
解:份.
建议:开卷有益,要养成阅读的好习惯
【点睛】
本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.
5、
(1)见解析
(2)
【分析】
(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;
(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.
【小题1】
解:证明:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,
∵CF∥ED,
∴四边形CDEF是平行四边形,
∵DC=DE.
∴四边形CDEF是菱形;
【小题2】
如图,连接GF,
∵四边形CDEF是菱形,
∴CF=CD=5,
∵BC=3,
∴BF=,
∴AF=AB-BF=5-4=1,
在△CDG和△CFG中,
,
∴△CDG≌△CFG(SAS),
∴FG=GD,
∴FG=GD=AD-AG=3-AG,
在Rt△FGA中,根据勾股定理,得
FG2=AF2+AG2,
∴(3-AG)2=12+AG2,
解得AG=.
【点睛】
本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.
【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共18页。试卷主要包含了下列图形是中心对称图形的是.,已知4个数,如图,在中,,,则的值为,如图,点C等内容,欢迎下载使用。
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
【真题汇编】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共20页。试卷主要包含了下列图形中,是中心对称图形的是,下列判断错误的是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。