【难点解析】2022年西安市长安区中考数学备考模拟练习 (B)卷(含详解)
展开
这是一份【难点解析】2022年西安市长安区中考数学备考模拟练习 (B)卷(含详解),共21页。试卷主要包含了下列各对数中,相等的一对数是,已知和是同类项,那么的值是等内容,欢迎下载使用。
2022年西安市长安区中考数学备考模拟练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,,平分,于点,交于点,若,则的长为( )A.3 B.4 C.5 D.62、已知ax2+24x+b=(mx﹣3)2,则a、b、m的值是( )A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=43、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )A.60 B.30 C.600 D.3004、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )A.(x+2)2=2 B.(x-2)2=7 C.(x+2)2=1 D.(x-2)2=15、一个两位数,十位上的数字是x,个位上的数字比十位上的数字的3倍少4,这个两位数可以表示为( )A.x(3x-4) B.x(3x+4) C.13x+4 D.13x-46、下列各对数中,相等的一对数是( )A.与 B.与 C.与 D.与7、下列对一元二次方程x2-2x-4=0根的情况的判断,正确的是( )A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断8、已知和是同类项,那么的值是( )A.3 B.4 C.5 D.69、如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第个图案中有2023个白色纸片,则的值为( )A.672 B.673 C.674 D.67510、如图,点P是▱ABCD边AD上的一点,E,F分别是BP,CP的中点,已知▱ABCD面积为16,那么△PEF的面积为( )A.8 B.6 C.4 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,AB=AC,∠A=20°,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE为________°.2、若,则的值是______.3、如果关于x的方程x2﹣x+2a=4有一个根是x=﹣1,那么a=___.4、已知某数的相反数是﹣2,那么该数的倒数是 __________________.5、经过定点A、B的圆心轨迹是_____.三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解下列方程:(1);(2).2、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.已知点,,,.(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.3、在整式的加减练习中,已知,小王同学错将“”看成“”算得错误结果为,请你解决以下问题:(1)求出整式;(2)求出正确计算结果.4、百货大楼童装专柜平均每天可售出30件童装,每件盈利40元,为了迎接“周年庆”促销活动,商场决定采取适当的降价措施.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出3件.要使平均每天销售这种童装盈利1800元,那么每件童装应降价多少元?5、如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长交y轴于点E.(1)求证:△OBC≌△ABD.(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形? -参考答案-一、单选题1、D【分析】过作于,由题意可知,由角角边可证得,故,由直角三角形中30°的角所对的边是斜边的一半可知,再由等角对等边即可知.【详解】解:过作于,,交于点,平分,,,OP=OP,,又,,故选:D.【点睛】本题考查了角平分线的性质,平行线的性质,全等三角形的判定及性质以及在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.两直线平行,内错角相等.2、B【分析】将根据完全平方公式展开,进而根据代数式相等即可求解【详解】解:∵ ,ax2+24x+b=(mx﹣3)2,∴即故选B【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键.3、B【分析】根据样本的百分比为,用1000乘以3%即可求得答案.【详解】解:∵随机抽取100件进行检测,检测出次品3件,∴估计1000件产品中次品件数是故选B【点睛】本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.4、D【分析】根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.【详解】,整理得:,配方得:,即.故选:D.【点睛】本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.5、D【分析】因为两位数十位数字个位数字,所以求得个位数字是,可得这个两位数可表示为.【详解】解:十位上的数字是x,个位上的数字比十位上的数字的3倍少4,个位数字是,这个两位数可表示为,故选:D.【点睛】本题考查了列代数式,解题的关键是掌握两位数的表示方法.6、C【分析】先化简,再比较即可.【详解】A. ∵=1,=-1,∴≠,故不符合题意;B. ∵=-1,=1,∴≠,故不符合题意;C. ∵=-1,=-1,∴=,故符合题意;D. ∵=,=,∴≠,故不符合题意;故选C.【点睛】本题考查了有理数的乘方,绝对值,有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.正确化简各数是解答本题的关键.7、B【分析】根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.【详解】解:∵Δ=(-2)2-4×1×(-4)= 20>0,∴方程x2-2x-4=0有两个不相等的实数根.故选:B.【点睛】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.8、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.9、C【分析】根据题目中的图形,可以发现白色纸片的变化规律,然后根据第n个图案中白色纸片2023个,即可解题.【详解】解:由图可知,第1个图案中白色纸片的个数为:1+1×3=4,第2个图案中白色纸片的个数为:1+2×3=7,第3个图案中白色纸片的个数为:1+3×3=10,…第n个图案中白色纸片的个数为:1+3n,由题意得,1+3n =2023解得n=674故选:C.【点睛】本题考查图形的变化,发现题目中白色纸片的变化规律、利用数形结合思想解题是关键.10、D【分析】根据平行线间的距离处处相等,得到,根据EF是△PBC的中位线,得到△PEF∽△PBC,EF=,得到计算即可.【详解】∵点P是▱ABCD边AD上的一点,且 ▱ABCD面积为16,∴;∵E,F分别是BP,CP的中点, ∴EF∥BC,EF=,∴△PEF∽△PBC,∴,∴,故选D.【点睛】本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.二、填空题1、60【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【详解】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∴∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故答案为:60.【点睛】本题主要考查了线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2、【分析】根据绝对值、平方的非负性,可得 ,再代入即可求解.【详解】解:∵,∴ ,解得: ,∴.故答案为:【点睛】本题主要考查了绝对值、平方的非负性,乘方运算,熟练掌握绝对值、平方的非负性,乘方运算法则是解题的关键.3、【分析】直接根据一元二次方程的解的定义,将代入得到关于的一元一次方程,进而解方程求解即可.【详解】解:∵关于x的方程x2﹣x+2a=4有一个根是x=﹣1,解得故答案为:1【点睛】本题考查了一元二次方程的解的定义,掌握解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.4、【分析】根据相反数与倒数的概念可得答案.【详解】解:∵某数的相反数是﹣2,∴这个数为2,∴该数的倒数是.故答案为:.【点睛】本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.5、线段的垂直平分线【分析】根据到两点的距离相等的点在线段的垂直平分线上可得结论【详解】解:根据到两点的距离相等的点在线段的垂直平分线上可知,经过定点A、B的圆心轨迹是线段的垂直平分线故答案为:线段的垂直平分线【点睛】本题考查了垂直平分线的性质判定,理解题意是解题的关键.三、解答题1、(1),(2),【分析】(1)用配方法解即可;(2)用因式分解法即可.(1)方程配方得:开平方得:解得:,(2)原方程可化为:即∴或解得:,【点睛】本题考查了解一元二次方程的配方法和因式分解法,根据方程的特点采用适当的方法可使解方程简便.2、(1)C(2)(3)【分析】(1)作出图形,根据切线的定义结合“关联点”即可求解;(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.(1)解:如图,,,,,,轴,.的半径为2,直线与相切直线l和的“关联点”是点故答案为:(2)如图,根据题意与有“关联点”,则与相切,且与相离,是等边三角形为的中点,则当与相切时,则点为的内心半径r的取值范围为:(3)如图,设和直线m的“关联点”为,,交轴于点,是的切线,的圆心为点,半径为t,轴是的切线点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,在直线上,当直线与相切时,即当点与点重合时,最大,此时与轴交于点,当点运动到点时,则过点,则解得b的取值范围为:【点睛】本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键.3、(1)(2)【分析】(1)根据结果减去,进而根据整式的加减运算化简即可求得整式;(2)按要求计算,根据去括号,合并同类项进行计算化简即可.(1)解:∵,∴(2)解:∵,∴【点睛】本题考查了整式的加减运算,正确的去括号是解题的关键.4、10元或20元【分析】设每件童装应降价x元,根据题意列出一元二次方程,解方程求解即可【详解】解:设每件童装应降价x元根据题意,得解这个方程,得 答:每件童装应降价10元或20元.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.5、(1)见解析;(2)点C在运动过程中,∠CAD的度数不会发生变化,∠CAD=60°;(3)当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.【分析】(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;(2)由△AOB是等边三角形知∠BOA=∠OAB=60°,再由△OBC≌△ABD知∠BAD=∠BOC=60°,根据∠CAD=180°-∠OAB-∠BAD可得结论;(3)由(2)易求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.【详解】解:(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABD,在△OBC和△ABD中,∵,∴△OBC≌△ABD(SAS);(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:∵△AOB是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°;(3)由(2)得∠CAD=60°,∴∠EAC=180°-∠CAD =120°,∴∠OEA=∠EAC-90°=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.【点睛】本题是三角形的综合问题,主要考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C的坐标.
相关试卷
这是一份【历年真题】:2022年西安市长安区中考数学备考模拟练习 (B)卷(含答案及解析),共26页。
这是一份【难点解析】2022年西安市长安区中考数学模拟真题 (B)卷(含答案及解析),共21页。试卷主要包含了如果与的差是单项式,那么等内容,欢迎下载使用。
这是一份【难点解析】2022年中考数学备考模拟练习 (B)卷(含详解),共22页。试卷主要包含了如图所示,该几何体的俯视图是,已知4个数,一组样本数据为1等内容,欢迎下载使用。