【真题汇编】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A.B.C.D.1
2、若菱形的周长为8,高为2,则菱形的面积为( )
A.2B.4C.8D.16
3、对于二次函数y=﹣x2+2x+3,下列说法不正确的是( )
A.开口向下
B.当x≥1时,y随x的增大而减小
C.当x=1时,y有最大值3
D.函数图象与x轴交于点(﹣1,0)和(3,0)
4、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )
A.63°B.58°C.54°D.56°
5、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )
A.﹣1B.1C.﹣2D.2
6、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣)B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣)D.(2x﹣4﹣)(2x﹣4+)
7、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.
A.3B.2C.1D.0
8、下列式中,与是同类二次根式的是( )
A.B.C.D.
9、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.y=2(x﹣3)2B.y=2(x+3)2C.y=2x2﹣3D.y=2x2+3
10、下列运动中,属于旋转运动的是( )
A.小明向北走了 4 米B.一物体从高空坠下
C.电梯从 1 楼到 12 楼D.小明在荡秋千
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、化简:(a>0)=___;
2、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____.
3、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.
4、某班学生分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了两组,这个班共有多少名学生?若设共有x名学生,可列方程为________.
5、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.
三、解答题(5小题,每小题10分,共计50分)
1、一副三角板按如图1方式拼接在一起,其中边OA、OC与直线EF重合,∠AOB=45°,∠COD=60°.
(1)求图1中∠BOD的度数.
(2)如图2,三角板COD固定不动,将三角板AOB绕点O按顺时针方向旋转一个角度(即∠AOE=),在转动过程中两个三角板一直处于直线EF的上方.
①当OB平分OA、OC、OD其中的两边组成的角时,求满足要求的所有旋转角度的值;
②在转动过程中是否存在∠BOC=2∠AOD?若存在,求此时α的值;若不存在,请说明理由.
2、解不等式:﹣2<.
3、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?
4、如图,抛物线y=x2+bx+c(a≠0)与x轴交于4B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线的对称轴为直线x=﹣1,点D为抛物线的顶点,连接AD,AC.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求抛物线的解析式;
(2)如图1,点P是抛物线上第三象限内的一个动点,过点P作PM∥x轴交AC于点M,求PM的最大值及此时点P的坐标;
(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线AC上一动点,直接写出使得由点C,B,M,Q组成的四边形是平行四边形的点Q的坐标;并把求其中一个点Q的坐标的过程写出来.
5、如图,在长方形中,,.延长到点,使,连接.动点从点出发,沿着以每秒1个单位的速度向终点运动,点运动的时间为秒.
(1)的长为 ;
(2)连接,求当为何值时,;
(3)连接,求当为何值时,是直角三角形;
(4)直接写出当为何值时,是等腰三角形.
-参考答案-
一、单选题
1、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
2、B
【分析】
根据周长求出边长,利用菱形的面积公式即可求解.
【详解】
∵菱形的周长为8,
∴边长=2,
∴菱形的面积=2×2=4,
故选:B.
【点睛】
此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
3、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】
解:y=-x2++2x+3=-(x-1)2+4,
∵a=-1<0,
∴该函数的图象开口向下,
故选项A正确;
∵对称轴是直线x=1,
∴当x≥1时,y随x的增大而减小,
故选项B正确;
∵顶点坐标为(1,4),
∴当x=1时,y有最大值4,
故选项C不正确;
当y=0时,-x2+2x+3=0,
解得:x1=-1,x2=3,
∴函数图象与x轴的交点为(-1,0)和(3,0),
故D正确.
故选:C.
【点睛】
本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
4、C
【分析】
先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
5、B
【分析】
关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.
【详解】
解:∵与点关于y轴对称,
∴,,
∴,
故选:B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.
6、B
【分析】
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
7、A
【分析】
①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;
②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;
③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.
【详解】
解:①如下图,连接AM,延长DE交BF于J,
∵四边形ABCD是正方形,
∴AB=AD,∠DAE=∠BAF=90°,
由题意可得AE=AF,
∴△BAF≌△DAE(SAS),
∴∠ABF=∠ADE,
∵∠ADE+∠AED=90°,∠AED=∠BEJ,
∴∠BEJ+∠EBJ=90°,
∴∠BJE=90°,
∴DJ⊥BF,
由翻折可知:EA=EM,DM=DA,
∴DE垂直平分线段AM,
∴BF∥AM,故①正确;
②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,
在MD上取一点J,使得ME=MJ,连接EJ,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则由题意可得∠M=90°,
∴∠MEJ=∠MJE=45°,
∴∠JED=∠JDE=22.5°,
∴EJ=JD,
设AE=EM=MJ=x,则EJ=JD=x,
则有x+x =4,
∴x=4﹣4,
∴AE=4﹣4,故②正确;
③如下图,连接CF,
当EF=CE时,设AE=AF=m,
则在△BCE中,有2m²=4²+(4-m)2,
∴m=4﹣4或-4﹣4 (舍弃),
∴AE=4﹣4,故③正确;
故选A.
【点睛】
本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
8、A
【分析】
先根据二次根式的性质化成最简二次根式,再看看被开方数是否相同即可.
【详解】
解:A、,即化成最简二次根式后被开方数相同(都是5),所以是同类二次根式,故本选项符合题意;
B、最简二次根式和的被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
C、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
D、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
故选:A.
【点睛】
本题考查了二次根式的性质与化简和同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键.
9、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
10、D
【分析】
旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可.
【详解】
解:A. 小明向北走了 4 米,是平移,不属于旋转运动,故选项A不合题意;
B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B不合题意;
C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C不合题意;
D. 小明在荡秋千,是旋转运动,故选项D符合题意.
故选D.
【点睛】
本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键.
二、填空题
1、
【分析】
根据二次根式的性质即可求出答案.
【详解】
解:原式=
=
故答案为:.
【点睛】
本题考查二次根式的性质与化简,解题的关键是熟练运用二次根式的除法运算法则,本题属于基础题型.
2、-3
【分析】
求解的值,然后代入求解即可.
【详解】
解:由题意知
解得
∴
故答案为:.
【点睛】
本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.
3、
【分析】
如图,过点O作,根据矩形的对角线相等且互相平分可得,,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,由得,利用勾股定理求出,由矩形面积得解.
【详解】
如图,过点O作,
∵四边形ABCD是矩形,
∴,,,
∵,
∴,
∴,
∴,
∴,,
∴.
故答案为:.
【点睛】
本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.
4、
【分析】
设这个班学生共有人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了组,根据此列方程即可.
【详解】
解:设这个班学生共有人,
根据题意得:
故答案为:.
【点睛】
此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组.
5、13:30
【分析】
设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.
【详解】
解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:
(10×0.02+10m+10n)×(1+30%)=2.6,
解得m+n=0.18,
则甲种干果的成本价为10×0.02+10m+10n=2(元),
乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),
设甲种干果x袋,乙种干果y袋,根据题意得:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2x×30%+1.3y×20%=(2x+1.3y)×24%,
解得,,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.
故答案为:13:30.
【点睛】
本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.
三、解答题
1、
(1)75
(2)①旋转角α的值为30°,90°,105°;②当α=105°或125°时,存在∠BOC=2∠AOD.
【分析】
(1)根据平平角的定义即可得到结论;
(2)①根据已知条件和角平分线的定义即可得到结论;
②当OA在OD的左侧时,当OA在OD的右侧时,列方程即可得到结论.
(1)
解:∵∠AOB=45°,∠COD=60°,
∴∠BOD=180°-∠AOB-∠COD=75°,
故答案为:75;
(2)
解:①当OB平分∠AOD时,
∵∠AOE=α,∠COD=60°,
∴∠AOD=180°-∠AOE-∠COD=120°-α,
∴∠AOB=∠AOD=60°-α=45°,
∴α=30°,
当OB平分∠AOC时,
∵∠AOC=180°-α,
∴∠AOB=90°-α=45°,
∴α=90°;
当OB平分∠DOC时,
∵∠DOC=60°,
∴∠BOC=30°,
∴α=180°-45°-30°=105°,
综上所述,旋转角度α的值为30°,90°,105°;
②当OA在OD的左侧时,则∠AOD=120°-α,∠BOC=135°-α,
∵∠BOC=2∠AOD,
∴135°-α=2(120°-α),
∴α=105°;
当OA在OD的右侧时,则∠AOD=α-120°,∠BOC=135°-α,
∵∠BOC=2∠AOD,
∴135°-α=2(α-120°),
∴α=125°,
综上所述,当α=105°或125°时,存在∠BOC=2∠AOD.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了角的计算,特殊角,角平分线的定义,正确的理解题意是解题的关键.
2、x>
【分析】
将不等式变形,先去分母,再去括号,移项、合并同类项即可.
【详解】
解:不等式整理得,,
去分母,得2(2x+1)-12<3(3x-2).
去括号,得4x+2-12<9x-6.
移项,得4x-9x<-6+12-2.
合并同类项,得-5x<4,
系数化为1,得x>.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
3、50
【分析】
设购进x盏节能灯,列一元一次方程解答.
【详解】
解:设购进x盏节能灯,由题意得
25x+160=30(x-3)
解得x=50,
答:该商店共购进了50盏节能灯.
【点睛】
此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.
4、
(1)
(2)最大值为2,
(3),或,
【分析】
(1)用待定系数法即可得抛物线的解析式为;
(2)由,得直线解析式为,设,,可得,即得时,的值最大,最大值为2,;
(3)由已知得平移后的抛物线解析式为,设,,而,,①以、为对角线,则的中点即是的中点,即,解得,或,;②以、为对角线,得,方程组无解;③以、为对角线,,解得,或,.
(1)
解:点的坐标为在抛物线,抛物线的对称轴为直线,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,解得,
抛物线的解析式为;
(2)
在中,令得或,
,
在中,令得,
,
设直线解析式为,则,
解得,
直线解析式为,
设,,
由得,
,,
,
,
时,的值最大,最大值为2;
此时;
(3)
将原抛物线向右平移,使得点刚好落在原点,
平移后的抛物线解析式为,
设,,而,,
①以、为对角线,则的中点即是的中点,
,解得,
,或,;
②以、为对角线,
,方程组无解;
③以、为对角线,
,解得,
,或,;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上所述,,或,.
【点睛】
本题考查二次函数综合应用,涉及待定系数法、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度
5、(1)5;(2)秒时,;(3)当秒或秒时,是直角三角形;(4)当秒或秒或秒时,为等腰三角形.
【分析】
(1)根据长方形的性质及勾股定理直接求解即可;
(2)根据全等三角形的性质可得:,即可求出时间t;
(3)分两种情况讨论:①当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;②当时,此时点P与点C重合,得出,即可计算t的值;
(4)分三种情况讨论:①当时,②当时,③当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得.
【详解】
解:(1)∵四边形ABCD为长方形,
∴,,
在中,
,
故答案为:5;
(2)如图所示:当点P到如图所示位置时,,
∵,,
∴,仅有如图所示一种情况,
此时,,
∴,
∴秒时,;
(3)①当时,如图所示:
在中,
,
在中,
,
∴,
,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
解得:;
②当时,此时点P与点C重合,
∴,
∴;
综上可得:当秒或秒时,是直角三角形;
(4)若为等腰三角形,分三种情况讨论:
①当时,如图所示:
∵,,
∴,
∴,
∴;
②当时,如图所示:
,
∴;
③当时,如图所示:
,
∴,
在中,
,
即,
解得:,
,
∴;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上可得:当秒或秒或秒时,为等腰三角形.
【点睛】
题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键.
【真题汇编】湖南省娄底市中考数学模拟定向训练 B卷(含答案详解): 这是一份【真题汇编】湖南省娄底市中考数学模拟定向训练 B卷(含答案详解),共27页。试卷主要包含了下列图像中表示是的函数的有几个等内容,欢迎下载使用。
【真题汇总卷】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案解析): 这是一份【真题汇总卷】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案解析),共24页。试卷主要包含了如图,在中,,,则的值为等内容,欢迎下载使用。
【真题汇编】2022年北京市石景山区中考数学模拟定向训练 B卷(含答案及详解): 这是一份【真题汇编】2022年北京市石景山区中考数学模拟定向训练 B卷(含答案及详解),共25页。试卷主要包含了如图,在中,,,则的值为等内容,欢迎下载使用。