【真题汇编】2022年广东省广州市中考数学三年真题模拟 卷(Ⅱ)(含答案详解)
展开
这是一份【真题汇编】2022年广东省广州市中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共22页。试卷主要包含了如果与的差是单项式,那么,下列计算正确的是,下列各点在反比例的图象上的是等内容,欢迎下载使用。
2022年广东省广州市中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A.1个 B.2个 C.3个 D.4个2、正八边形每个内角度数为( )A.120° B.135° C.150° D.160°3、下列计算正确的是( )A. B. C. D.4、如果与的差是单项式,那么、的值是( )A., B., C., D.,5、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )A. B. C. D.6、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )A.6 B.8 C.10 D.4.87、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )A. B.四边形EFGH是菱形C. D.8、下列计算正确的是( )A. B. C. D.9、下列各点在反比例的图象上的是( )A.(2,-3) B.(-2,3) C.(3,2) D.(3,-2)10、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )A. B.4 C. D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)2、经过定点A、B的圆心轨迹是_____.3、若a和b互为相反数,c和d互为倒数,则的值是________________.4、若使多项式中不含有的项,则__________.5、如图,在中,和的平分线相交于点,过点作交于点,交于点,过点作于,下列四个结论:①;②;③点到各边的距离相等;④设,,则.其中正确的结论有________(填写序号).三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:(1),其中;(2),其中,.2、解下列方程:(1);(2)3、如图,在Rt△ABC中,,cm.点D从A出发沿AC以1cm/s的速度向点C移动;同时,点F从B出发沿BC以2cm/s的速度向点C移动,移动过程中始终保持(点E在AB上).当其中一点到达终点时,另一点也同时停止移动.设移动时间为t(s)(其中).(1)当t为何值时,四边形DEFC的面积为18?(2)是否存在某个时刻t,使得,若存在,求出t的值,若不存在,请说明理由.(3)点E是否可能在以DF为直径的圆上?若能,求出此时t的值,若不能,请说明理由.4、计算(1)(2)5、计算:. -参考答案-一、单选题1、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.【详解】解:解不等式组得:,∵不等式组有且仅有3个整数解,∴,解得:,解方程得:,∵方程的解为负整数,∴,∴,∴a的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a为:-13,-11,-9,共3个,故选C.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.2、B【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:∴内角为故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.3、D【分析】直接根据合并同类项运算法则进行计算后再判断即可.【详解】解:A. ,选项A计算错误,不符合题意;B. ,选项B计算错误,不符合题意;C. ,选项C计算错误,不符合题意;D. ,计算正确,符合题意故选:D【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.4、C【分析】根据与的差是单项式,判定它们是同类项,根据同类项的定义计算即可.【详解】∵与的差是单项式,∴与是同类项,∴n+2=3,2m-1=3,∴m=2, n=1,故选C.【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.5、D【分析】旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解【详解】解:旋转阴影部分,如图,∴该点取自阴影部分的概率是故选:D【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.6、D【分析】如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.【详解】解:如图所示:过点作于点,交于点,过点作于点,平分,,.在中,,,,,,,,.即的最小值是4.8,故选:D.【点睛】本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.7、C【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.8、D【分析】先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.【详解】A. ,故A选项错误;B. ,不是同类项,不能合并,故错误;C. ,故C选项错误;D. ,故D选项正确.故选:D.【点睛】本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.9、C【分析】根据反比例函数图象上点的坐标特征对各选项进行判断.【详解】解:∵2×(−3)=−6,−2×3=−6,3×(−2)=−6, 而3×2=6,∴点(2,−3),(−2,3)(3,−2),不在反比例函数图象上,点(3,2)在反比例函数图象上.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10、A【分析】根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算【详解】解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,,2,,3四个数循环出现,表示的数是与表示的两个数之积是故选A【点睛】本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.二、填空题1、4(答案不唯一)【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即;而小于两边之和,即,即第三边,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.2、线段的垂直平分线【分析】根据到两点的距离相等的点在线段的垂直平分线上可得结论【详解】解:根据到两点的距离相等的点在线段的垂直平分线上可知,经过定点A、B的圆心轨迹是线段的垂直平分线故答案为:线段的垂直平分线【点睛】本题考查了垂直平分线的性质判定,理解题意是解题的关键.3、-2020【分析】利用相反数,倒数意义求出各自的值,代入原式计算即可得到结果.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,则.故答案为:-2020.【点睛】本题考查了代数式的求值,有理数的混合运算,相反数,倒数,熟练掌握各自的性质是解本题的关键.4、【分析】由于多项式含有项的有,若不含项,则它们的系数为0,由此即可求出m值.【详解】解:∵多项式中不含项,∴的系数为0,即=0,.故答案为.【点睛】本题难度较低,主要考查学生对合并同类项的掌握,先将原多项式合并同类项,再令项的系数为0,然后解关于m的方程即可求解.5、①③④【分析】由角平分线的性质,平行的性质,三角形的性质等对结论进行判定即可.【详解】解:在中,和的平分线相交于点,,,,,;故②错误;在中,和的平分线相交于点,,,,,,,,,,,故①正确;过点作于,作于,连接,在中,和的平分线相交于点,,;故④正确;在中,和的平分线相交于点,点到各边的距离相等,故③正确.故答案为:①③④.【点睛】本题考查了三角形内的有关角平分线的综合问题,一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线,角的平分线上的点到角的两边的距离相等.也就是说,一个点只要在角的平分线上,那么这个点到该角的两边的距离相等.三、解答题1、(1);(2);【分析】(1)先根据合并同类项化简,进而代数式求值即可;(2)先去括号,再合并同类项,进而将的值代入求解即可.(1)当时,原式(2)当,时,原式【点睛】本题考查了整式的加减中的化简求值,正确的计算是解题的关键.2、(1)(2)【解析】(1)解:,,解得:;(2)解:,,,,解得:.【点睛】本题考查了一元一次方程的求解,解题的关键是掌握解一元一次方程的一般步骤.3、(1)(2)不存在,说明见解析(3)能,【分析】(1)由题意知,四边形为梯形,则,,求t的值,由得出结果即可;(2)假设存在某个时刻t,则有,解得t的值,若,则存在;否则不存在;(3)假设点E在以DF为直径的圆上,则四边形DEFC为矩形,,故有,求t的值,若,则存在;否则不存在.(1)解:∵∴是等腰直角三角形,∵∴,∴是等腰直角三角形,四边形为直角梯形∴∵∴∵∴解得或.∵且∴∴.(2)解:假设存在某个时刻t,使得.∴化简得解得或∵∴不存在某个时刻t,使得.(3)解:假设点E在以DF为直径的圆上,则四边形DEFC为矩形∴,即解得∵∴当时,点E在以DF为直径的圆上.【点睛】本题考查了解一元二次方程,勾股定理,直径所对的圆周角为90°,矩形的性质,等腰三角形等知识点.解题的关键在于正确的表示线段的长度.4、(1)7;(2).【分析】(1)先计算乘方,再计算乘除,去括号,再计算加减即可;(2)先变带分数为假分数,把除变乘,利用乘法分配律简算,再计算加法即可.(1)解:,=,=,=,=7;(2)解:,=,=,=,=,=.【点睛】本题考查含乘方的有理数混合运算,掌握运算法则,先乘方,再乘除,最后加减,有括号先算小括号,中括号,再大括号,能简算的可简算.5、【分析】根据二次根式的乘法,以及二次根式的性质,分母有理化进行计算即可.【详解】解:【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.
相关试卷
这是一份【真题汇编】2022年广东省广州市中考数学真题汇总 卷(Ⅱ)(含详解),共24页。试卷主要包含了下列二次根式的运算正确的是,已知点A等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年广东省广州市中考数学三年真题模拟 卷(Ⅱ)(含详解),共23页。试卷主要包含了下列命题错误的是,一组样本数据为1等内容,欢迎下载使用。
这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。