【真题汇编】2022年广东省佛山市禅城区中考数学模拟真题 (B)卷(含答案及解析)
展开2022年广东省佛山市禅城区中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算中,正确的是( )
A.=﹣6 B.﹣=5 C.=4 D.=±8
2、如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD为黄金矩形,宽AD=﹣1,则长AB为( )
A.1 B.﹣1 C.2 D.﹣2
3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
A.点 B.点 C.点 D.点
4、等腰三角形的一个内角是,则它的一个底角的度数是( )
A. B.
C.或 D.或
5、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
6、如图,表示绝对值相等的数的两个点是( )
A.点C与点B B.点C与点D C.点A与点B D.点A与点D
7、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )
A. B. C. D.
8、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬 B.奥 C.运 D.会
9、某物体的三视图如图所示,那么该物体形状可能是( )
A.圆柱 B.球 C.正方体 D.长方体
10、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )
A.0个 B.1个 C.2个 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算: _______
2、底面圆的半径为3,高为4的圆锥的全面积是______.
3、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______
4、已知三点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,若a<0<b<c,则m、n和t的大小关系是 ___.(用“<”连接)
5、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
三、解答题(5小题,每小题10分,共计50分)
1、已知二元一次方程组,求的值.
2、如图,AC,BD相交于的点O,且∠ABO=∠C.求证:△AOB∽△DOC.
3、如图所示,下图是由七块积木搭成,这几块积木都是相同的正方体,利用下面方格纸中的纵横线,画出从这个图形的正面看、左面看和上面看的图形.
4、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离与行驶时间之间的关系如下图所示.
(1)______,______.
(2)请你求出甲车离出发地郑州的距离与行驶时间之间的函数关系式.
(3)求出点的坐标,并说明此点的实际意义.
(4)直接写出甲车出发多长时间两车相距40千米.
5、若,则称m与n是关于1的平衡数.
(1)8与 是关于1的平衡数;
(2)与 (用含x的整式表示)是关于1的平衡数;
(3)若,,判断a与b是否是关于1的平衡数,并说明理由.
-参考答案-
一、单选题
1、C
【分析】
根据算术平方根的意义逐项化简即可.
【详解】
解:A.无意义,故不正确;
B.﹣=-5,故不正确;
C.=4,正确;
D.=8,故不正确;
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
2、C
【分析】
根据黄金矩形的定义,得出宽与长的比例即可得出答案.
【详解】
解:黄金矩形的宽与长的比等于黄金数,
,
.
故选:C.
【点睛】
本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.
3、B
【分析】
结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
【详解】
∵点和,
∴坐标原点的位置如下图:
∵藏宝地点的坐标是
∴藏宝处应为图中的:点
故选:B.
【点睛】
本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
4、A
【分析】
由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.
【详解】
解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角
∴底角的度数为
故选A.
【点睛】
本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.
5、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
6、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
7、C
【分析】
由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.
【详解】
解:设圆心为O,连接OB.
Rt△OBC中,BC=AB=20cm,
根据勾股定理得:
OC2+BC2=OB2,即:
(OB-10)2+202=OB2,
解得:OB=25;
故轮子的半径为25cm.
故选:C.
【点睛】
本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
8、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
9、A
【分析】
根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.
【详解】
解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,
则该几何体是圆柱.
故选:A.
【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.
10、C
【分析】
根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论
【详解】
解:∵抛物线的顶点坐标为(1,-4),
∴
∴
∴
把(1,-4)代入,得,
∴
∴
∴
∴抛物线与轴有两个交点
故选:C
【点睛】
本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点
二、填空题
1、##
【分析】
根据二次根式的加减乘除运算法则逐个运算即可.
【详解】
解:原式,
故答案为:.
【点睛】
本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可.
2、
【分析】
首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可.
【详解】
∵圆锥的底面半径为3,高为4,
∴母线长为5,
∴圆锥的底面积为:,圆锥的侧面积为:,
∴圆锥的全面积为:
故答案为:.
【点睛】
本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.
3、
【分析】
作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.
【详解】
作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示
由对称的性质得:PB=PC
∴AB+PA+PB=AB+PA+PC≥AB+AC
即当点P在AC上时,周长最小,且最小值为AB+AC
由勾股定理得:,
∴周长最小值为
故答案为:
【点睛】
本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.
4、
【分析】
先画出反比例函数y=(k>0)的图象,在函数图象上描出点(a,m)、(b,n)和(c,t),再利用函数图象可得答案.
【详解】
解:如图,反比例函数y=(k>0)的图像在第一,三象限,
而点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,a<0<b<c,
即
故答案为:
【点睛】
本题考查的是反比例函数的图象与性质,掌握“利用数形结合比较反比例函数值的大小”是解本题的关键.
5、70
【分析】
如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
【详解】
解:如图,由三角形的内角和定理得:,
图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,
,
故答案为:70.
【点睛】
本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
三、解答题
1、4
【分析】
将两式相加,直接得出x+y的值即可.
【详解】
解:,
(1)(2)得:,
.
【点睛】
本题考查了二元一次方程组的解法,解题的关键是把(x+y)看做一个整体,两式相加直接得到x+y的值.
2、见解析
【分析】
利用对顶角相等得到∠AOB=∠COD,再结合已知条件及相似三角形的判定定理即可求解.
【详解】
证明:∵AC,BD相交于的点O,
∴∠AOB=∠DOC,
又∵∠ABO=∠C,
∴△AOB∽△DOC.
【点睛】
本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解.
3、图见解析
【分析】
从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1;画出从正面,左面,上面看,得到的图形即可.
【详解】
解:如图所示:
【点睛】
本题考查了作图−−三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.
4、
(1)8,6.5
(2)
(3)点P的坐标为(5,360),点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米
(4)当甲车出发2.4小时或2.8小时或小时两车相距40千米
【分析】
(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m;然后算出乙车从西安到郑州需要的时间即可求出n;
(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;
(3)根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可;
(4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可.
(1)
解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止,
∴直线的函数图像是乙车的,折线的函数图像是甲车的,
由函数图像可知,甲车4小时从郑州行驶到西安走了480千米,
∴甲车的速度=480÷4=120千米/小时,
∴甲车从西安返回郑州需要的时间=480÷120=4小时,
∴m=4+4=8;
∵乙车的速度为80千米/小时,
∴乙车从西安到达郑州需要的时间=480÷80=6小时,
∵由函数图像可知乙车是在甲车出发0.5小时后出发,
∴n=0.5+6=6.5,
故答案为:8,6.5;
(2)
解:当甲车从郑州去西安时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
当甲车从西安返回郑州时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
∴;
(3)
解:根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,
∵此时甲车处在返程途中,
∴,
解得,
∴,
∴点P的坐标为(5,360),
∴点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;
(4)
解:当甲车在去西安的途中,甲乙两车相遇前,
由题意得:,
解得;
当甲车在去西安的途中,甲乙两车相遇后,
由题意得:,
解得;
当甲车在返回郑州的途中,乙未到郑州时,
由题意得:
解得(不符合题意,舍去),
当甲车在返回郑州的途中,乙已经到郑州时,
由题意得:
解得;
综上所述,当甲车出发2.4小时或2.8小时或小时两车相距40千米.
【点睛】
本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键.
5、
(1)-7
(2)5-x
(3)是,理由见解析
【分析】
(1)根据平衡数的定义即可求出答案.
(2)根据平衡数的定义即可求出答案.
(3)根据平衡数的定义以及整式的加减运算法则即可求出答案.
(1)
∵8+(﹣7)=1,
∴8与﹣7是关于1的平衡数,
故答案为:-7;
(2)
∵1﹣(x﹣4)=1﹣x +4=5﹣x,
∴5﹣x与x﹣4是关于1的平衡数,
故答案为:5﹣x.
(3)
∵,
∴
=1
∴a与b是关于1的平衡数.
【点睛】
本题考查整式的混合运算与化简求值,解题的关键是正确理解平衡数的定义.
【真题汇总卷】2022年广东省佛山市禅城区中考数学模拟定向训练 B卷(精选): 这是一份【真题汇总卷】2022年广东省佛山市禅城区中考数学模拟定向训练 B卷(精选),共24页。试卷主要包含了已知,则的值为,已知的两个根为,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
【真题汇编】中考数学模拟真题 (B)卷(含详解): 这是一份【真题汇编】中考数学模拟真题 (B)卷(含详解),共19页。试卷主要包含了正八边形每个内角度数为,在数2,-2,,中,最小的数为,如果与的差是单项式,那么,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
【真题汇编】2022年广东省佛山市禅城区中考数学模拟专项测试 B卷(含答案详解): 这是一份【真题汇编】2022年广东省佛山市禅城区中考数学模拟专项测试 B卷(含答案详解),共25页。