


【真题汇编】2022年北京市平谷区中考数学考前摸底测评 卷(Ⅱ)(含答案详解)
展开
这是一份【真题汇编】2022年北京市平谷区中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了多项式去括号,得,下列说法中,不正确的是,下列四个实数中,无理数是,已知,,且,则的值为等内容,欢迎下载使用。
2022年北京市平谷区中考数学考前摸底测评 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则的值是( )A. B.0 C.1 D.20222、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )A. B.2 C.3 D.43、在以下实数中:-0.2020020002…,,,,,,无理数的个数是( )A.2个 B.3个 C.4个 D.5个4、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是( )A.10π B.12π C.16π D.20π5、多项式去括号,得( )A. B. C. D.6、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.A. B. C. D.2007、下列说法中,不正确的是( )A.是多项式 B.的项是,,1C.多项式的次数是4 D.的一次项系数是-48、下列四个实数中,无理数是( )A. B.0.131313… C. D.9、已知,,且,则的值为( )A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或310、二次函数y=(x+2)2+5的对称轴是( )A.直线x= B.直线x=5 C.直线x=2 D.直线x=﹣2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,东方明珠塔是上海的地标建筑之一,它的总高度是468米,塔身自下而上共有3个球体,其中第2个球体的位置恰好是总高度的黄金分割点,且它到地面的距离大于到塔顶的距离,则第2个球体到地面的距离是米_________.(结果保留根号).2、如图,点Q在线段AP上,其中,第一次分别取线段AP和AQ的中点,,得到线段,则线段____________;再分别取线段和的中点,,得到线段;第三次分别取线段和的中点,,得到线段;连续这样操作2021次,则每次的两个中点所形成的所有线段之和____________.3、如图,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,连接CD,将△BCD沿直线CD翻折得到△ECD,连接AE.若AC=6,BC=8,则△ADE的面积为____.4、计算:=______.5、若将数轴折叠,使得表示-1的点与表示5的点重合,则原点与表示_______的点重合.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1);(2).2、在ABC中,,,AD为ABC的中线,点E是射线AD上一动点,连接CE,作,射线EM与射线BA交于点F.(1)如图1,当点E与点D重合时,求证:;(2)如图2,当点E在线段AD上,且与点A,D不重合时,①依题意,补全图形;②用等式表示线段AB,AF,AE之间的数量关系,并证明.(3)当点E在线段AD的延长线上,且时,直接写出用等式表示的线段AB,AF,AE之间的数量关系.3、如图,在△ABC中,已知D是BC边的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.(1)说明BG与CF相等的理由.(2)说明∠BGD与∠DGE相等的理由.4、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:(1)本次调查的学生人数为___________.(2)补全频数直方图.(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议.5、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.(1)张红选择A安全检查口通过的概率是 ;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率. -参考答案-一、单选题1、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.【详解】解:∵,∴a-2=0,b+1=0,∴a=2,b=-1,∴=,故选C.【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.2、B【分析】由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点落在点处,,,又∵,∴,∴,,又为的中点,AE=AE'∴,,即,.故选:B.【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.3、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【详解】解:无理数有-0.2020020002…,,,,共有4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…,等有这样规律的数.解题的关键是理解无理数的定义.4、D【分析】首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:,则底面周长是:,则圆锥的侧面积是:.故选:D.【点睛】本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.5、D【分析】利用去括号法则变形即可得到结果.【详解】解:−2(x−2)=-2x+4,故选:D.【点睛】本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.6、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.【详解】解:连接BD,如下图所示:与所对的弧都是.. 所对的弦为直径AD,. 又,为等腰直角三角形,在中,,由勾股定理可得:. 故选:B.【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.7、C【分析】根据多项式的定义及项数、次数定义依次判断.【详解】解:A. 是多项式,故该项不符合题意; B. 的项是,,1,故该项不符合题意; C. 多项式的次数是5,故该项符合题意; D. 的一次项系数是-4,故该项不符合题意; 故选:C.【点睛】此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.8、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.【详解】解:A.,是整数,属于有理数,故本选项不合题意;B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.是无理数,故本选项符合题意;故选:D.【点睛】题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.9、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.【详解】解:∵,, ,∴x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1.故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.10、D【分析】直接根据二次函数的顶点式进行解答即可.【详解】解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2.故选:D.【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.二、填空题1、【分析】根据黄金分割点的概念,结合图形可知第2个球体到塔底部的距离是较长线段,进一步计算出长度.【详解】解:设第2个球体到塔底部的距离为,根据题意得:,解得:,第2个球体到塔底部的距离为米.故答案为:.【点睛】本题考查了黄金分割的概念,解题的关键是掌握如果线段上一点把线段分割为两条线段,,当,即时,则称点是线段的黄金分割点.2、5 【分析】根据线段中点的定义可得P1Q1=PQ,P2Q2=P1Q1,P3Q3=P2Q2,根据规律可得答案.【详解】解:∵线段AP和AQ的中点是P1,Q1,∴P1Q1=AP1-AQ1=AP-AQ=PQ=5;∵线段AP1和AQ1的中点P2,Q2,∴P2Q2=AP2-AQ2=AP1-AQ1=P1Q1=PQ,…,∴P1Q1+P2Q2+P3Q3+…+P2021Q2021=PQ+PQ+PQ+…+PQ=(1-)PQ=.故答案为:.【点睛】本题考查了两点间的距离,能够根据线段中点的定义得到其中的规律是解题关键.3、6.72【分析】连接BE,延长CD交BE与点H,作CF⊥AB,垂足为F.首先证明DC垂直平分线段BE,△ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在Rt△ABE中,利用勾股定理即可解决问题.【详解】解:如图,连接BE,延长CD交BE与点H,作CF⊥AB,垂足为F.∵∠ACB=90°,AC=6,BC=8.∴AB==10,∵D是AB的中点,∴AD=BD=CD=5,∵S△ABC=AC•BC=AB•CF,∴×6×8=×10×CF,解得CF=4.8.∵将△BCD沿直线CD翻折得到△ECD,∴BC=CE,BD=DE,∴CH⊥BE,BH=HE.∵AD=DB=DE,∴△ABE为直角三角形,∠AEB=90°,∴S△ECD=S△ACD,∴DC•HE=AD•CF,∵DC=AD,∴HE=CF=4.8.∴BE=2EH=9.6.∵∠AEB=90°,∴AE==2.8.∴S△ADE=EH•AE=×2.8×4.8=6.72.故答案为:6.72.【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型.4、2【分析】根据二次根式乘除法运算法则进行计算即可得到答案.【详解】解:原式,故答案为:.【点睛】此题主要考查了二次根式的乘除运算,掌握运算法则是解答此题的关键.5、4【分析】设原点与表示x的点重合,先根据题意求出数轴上折叠的那个地方表示的数为,则,由此即可得到答案.【详解】解:设原点与表示x的点重合,∵将数轴折叠,使得表示-1的点与表示5的点重合,∴数轴上折叠的那个地方表示的数为,∴,解得,故答案为:4.【点睛】本题主要考查了数轴上两点中点的计算方法,解一元一次方程,解题的关键在于能够根据题意求出折叠点表示的数.三、解答题1、(1)(2)【分析】(1)提取公因式,然后用完全平方公式进行化简即可.(2)提取公因式,然后用平方差公式进行化简即可.(1)解:原式;(2)解:原式.【点睛】本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.2、(1)见解析;(2),证明见解析;(3)当时,,当时,【分析】(1)根据等腰三角形三线合一的性质得,,从而可得在中,,进而即可求解;(2)画出图形,在线段AB上取点G,使,再证明,进而即可得到结论;(3)分两种情况:当时,当时,分别画出图形,证明或,进而即可得到结论.【详解】(1)∵,∴是等腰三角形,∵,∴,,∵AD为ABC的中线,∴,,∴,∵,∴,∴,∴,在中,,∴;(2),证明如下:如图2,在线段AB上取点G,使,∵,∴是等边三角形,∴,,∵是等腰三角形,AD为ABC的中线,∴,,∴,即,∵,∴,在与中,,∴,∴,∴;(3)当时,如图3所示:与(2)同理:在线段AB上取点H,使,∵,∴是等边三角形,∴,,∵是等腰三角形,AD为的中线,∴,∵,∴,∴,∴,∴,当时,如图4所示:在线段AB的延长线上取点N,使,∵,∴是等边三角形,∴,∵∴,在与中,,∴,∴,∴, ∴,∴.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.3、(1)见祥解(2)见祥解【分析】(1)求出BD=DC,∠GBD=∠DCF,证出△BDG≌△CDF即可;(2)根据线段垂直平分线性质得出EF=EG,求出∠DFE=∠DGE,∠DFE=∠BGD,即可得出答案.(1)解 ∵D为BC中点,∴BD=DC(中点的定义),∵BG∥FC(已知),∴∠GBD=∠DCF(两直线平行,内错角相等),在△BDG和△CDF中,,∴△BDG≌△CDF(ASA),∴BG=CF(全等三角形对应边相等);(2)解:∵D是BC边的中点,DE⊥GF,即DE为线段GF的中垂线,∴EF=EG,∴∠DFE=∠DGE(等边对等角),)∵∠DFE=∠BGD(全等三角形对应角相等),∴∠BGD=∠DGE(等量代换).【点睛】本题考查全等三角形的判定与性质,线段垂直平分线的性质.解答本题的关键是明确题意,找出所求问题需要的条件,证明三角形全等.4、(1)60(2)见解析(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)【分析】(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.(1)解:本次调查的学生人数为名;(2)解:平均每天读书的时间30—50分钟的人数为名,补全频数直方图如下图:(3)解:份.建议:开卷有益,要养成阅读的好习惯【点睛】本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.5、(1)(2)【分析】(1)根据概率公式求解即可;(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.【小题1】解:(1)∵有A.B、C三个闸口,∴张红选择A安全检查口通过的概率是,故答案为:;【小题2】根据题意画图如下:共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,则她俩选择相同安全检查口通过的概率是.【点睛】本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.
相关试卷
这是一份【真题汇总卷】2022年北京市通州区中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了已知圆O的半径为3,AB,的相反数是,要使式子有意义,则,下列命题正确的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年天津市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共23页。试卷主要包含了已知,则代数式的值是,若,,且a,b同号,则的值为等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共20页。试卷主要包含了下列图形中,是中心对称图形的是,下列判断错误的是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。
