【真题汇编】2022年贵州省铜仁市中考数学模拟真题 (B)卷(含答案详解)
展开2022年贵州省铜仁市中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是﹣3的是( )
A. B.
C. D.
2、如图,表示绝对值相等的数的两个点是( )
A.点C与点B B.点C与点D C.点A与点B D.点A与点D
3、下列格点三角形中,与右侧已知格点相似的是( )
A. B.
C. D.
4、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
5、在实数,,0.1010010001…,,中无理数有( )
A.4个 B.3个 C.2个 D.1个
6、根据以下程序,当输入时,输出结果为( )
A. B. C. D.
7、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
8、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A. B. C. D.
9、下列说法中,正确的是( )
A.东边日出西边雨是不可能事件.
B.抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7.
C.投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次.
D.小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.
10、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,一次函数的图像与轴交于点,与正比例函数的图像交于点,点的横坐标为1.5,则满足的的范围是______.
2、如图,是直线上的一点,和互余,平分,若,则的度数为__________.(用含的代数式表示)
3、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.
4、如图,已知的三个角,,,,将绕点顺时针旋转得到,如果,那么_______.
5、最简二次根式3与是同类二次根式,则x的值是 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.
(1)求证:AD=DC;
(2)求四边形ABCD的周长.
2、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且,A、B之间的距离记为或,请回答问题:
(1)直接写出a,b,的值,a=______,b=______,______.
(2)设点P在数轴上对应的数为x,若,则x=______.
(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为-1,动点P表示的数为x.
①若点P在点M、N之间,则______;
②若,则x=______;
③若点P表示的数是-5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?
3、如图,数轴上A和B.
(1)点A表示 ,点B表示 .
(2)点C表示最小的正整数,点D表示的倒数,点E表示,在数轴上描出点C、D、E.
(3)将该数轴上点A、B、C、D、E表示的数用“<”连起来: .
4、(数学阅读)
图1是由若干个小圆圈推成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共推了n层.
将图1倒置后与原图1排成图2的形状,这样图2中每一行的圆圈数都是.
我们可以利用“倒序相加法”算出图1中所有圆圈的个数为:.
(问题解决)
(1)按照图1的规则摆放到第12层时,求共用了多少个圆圈;
(2)按照图1的规则摆放到第19层,每个圆圈都按图3的方式填上一串连续的正整数:1,2,3,4,……,则第19层从左边数第二个圆圈中的数字是______.
5、(1).
(2).
-参考答案-
一、单选题
1、A
【分析】
根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.
【详解】
解: A.x=-3
B.x=-2
C.x=-2
D.x=-2
故答案为:A
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
2、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
3、A
【分析】
根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.
【详解】
解:的三边长分别为:,
,,
∵,
∴为直角三角形,B,C选项不符合题意,排除;
A选项中三边长度分别为:2,4,,
∴,
A选项符合题意,
D选项中三边长度分别为:,,,
∴,
故选:A.
【点睛】
题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.
4、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
5、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有0.1010010001…,,,共3个.
故选:B.
【点睛】
此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
6、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
7、B
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
8、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
9、D
【分析】
根据概率的意义进行判断即可得出答案.
【详解】
解:A、东边日出西边雨是随机事件,故此选项错误;.
B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;
C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;
D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.
故选:D
【点睛】
此题主要考查了概率的意义,正确理解概率的意义是解题关键.
10、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题
1、x>-3
【分析】
根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为.
【详解】
∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,
∴
解得m=k-2
联立y=mx和y=kx+6得
解得x=-3
即函数y=mx和y=kx+6交点P’的横坐标为-3,
观察函数图像得,
满足kx−3<mx<kx+6的x的范围为:
故答案为:
【点睛】
本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx−3<mx<kx+6解集转化为直线y=mx与直线y=kx-3,直线y=kx+6相交的横坐标x的范围.
2、2m
【分析】
根据互余定义求得∠DOC=90°,由此得到∠COE=90°-m,根据角平分线的定义求得∠BOC的度数,利用互补求出答案.
【详解】
解:∵和互余,
∴ + =90°,
∴∠DOC=90°,
∵,
∴∠COE=90°-m,
∵平分,
∴∠BOC=2∠COE=180°-2m,
∴ =180°-∠BOC=2m,
故答案为:2m.
【点睛】
此题考查了角平分线的定义,余角的定义,补角的定义,正确理解图形中各角度的关系并进行推理论证是解题的关键.
3、0
【分析】
根据一次函数的定义,列出关于m的方程和不等式进行求解即可.
【详解】
解:由题意得,|m-1|=1且m-2≠0,
解得:m=2或m=0且m≠2,
∴m=0.
故答案为:0.
【点睛】
本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.
4、度
【分析】
根据求出,即可求出旋转角的度数.
【详解】
解:绕点顺时针旋转得到,
则,
,
故答案为:.
【点睛】
本题考查了旋转的性质,解题关键是明确旋转角度为的度数.
5、
【分析】
由同类二次根式的定义可得再解方程即可.
【详解】
解:最简二次根式3与是同类二次根式,
解得:
故答案为:
【点睛】
本题考查的是同类二次根式的含义,掌握“利用同类二次根式的定义求解字母参数的值”是解本题的关键.
三、解答题
1、
(1)证明见解析;
(2)70.
【分析】
(1)在BC上取一点E,使BE=AB,连接DE,证得△ABD≌△EBD,进一步得出∠BED=∠A,利用等腰三角形的判定与性质与等量代换解决问题;
(2)首先判定△DEC为等边三角形,求得BC,进一步结合(1)的结论解决问题.
(1)
证明:在BC上取一点E,使BE=AB,连结DE.
∵BD平分∠ABC,
∴∠ABD=∠CBD.
在△ABD和△EBD中,
,
∴△ABD≌△EBD(SAS);
∴DE=AD=12,∠BED=∠A,AB=BE=17.
∵∠A=120°,
∴∠DEC=60°.
∵∠C=60°,
∴∠DEC=∠C,
∴DE=DC,
∴AD=DC.
(2)
∵∠C=60°,DE=DC,
∴△DEC为等边三角形,
∴EC=CD=AD.
∵AD=12,
∴EC=CD=12,
∴四边形ABCD的周长=17+17+12+12+12=70.
【点睛】
此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答.
2、
(1)-3,2,5
(2)8或-2
(3)①5;②-3.5或6.5;③2.5秒或10.5秒
【分析】
(1)根据绝对值的非负性,确定a,b的值,利用距离公式,计算即可;
(2)根据|x|=a,则x=a或x=-a,化简计算即可;
(3)①根据数轴上的两点间的距离公式,可得绝对值等于右端数减去左端的数,确定好点位置,表示的数,写出结果即可;
②根据10>5,判定P不在M,N之间,故分点P在M的右边和点P在点N的左侧,两种情形求解即可;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
故分点P在M的右边和点P在点M、点N之间,两种情形求解即可.
(1)
∵,
∴a+3=0,b-2=0,
∴a=-3,b=2,,
故答案为:-3,2,5.
(2)
∵,
∴,
∴x=8或-2;
故答案为:8或-2.
(3)
①点P在点M、N之间,且M表示4,N表示-1,动点P表示的数为x,
∴点P在定N的右侧,在点M的左侧,
∴PN=|x+1|=x+1,PM=|x-4|=4-x,
∴.
故答案为:5;
②根据10>5,判定P不在M,N之间,
当点P在M的右边时,
∴PN=|x+1|=x+1,PM=|x-4|=x-4,
∵,
∴x+1+x-4=10,
解得x=6.5;
当点P在点N的左侧时,
∴PN=|x+1|=-1-x,PM=|x-4|=4-x,
∵,
∴-1-x +4-x =10,
解得x=-3.5;
故答案为:6.5或-3.5;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
当点P在M的右边时,∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=-9+t,
∵PM+PN=8,
∴-4+t-9+t =8,
解得t=10.5;
当点P在点N、点M之间时,
∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=9-t,
∵PM+PN=8,
∴-4+t+9-t =8,
不成立;
当点P在N的左边时,
∴PN=|-5+t+1|=-1-(t-5)=4-t,PM=|-5+t-4|=4-(t-5)=9-t,
∵PM+PN=8,
∴4-t+9-t =8,
解得t=2.5;
综上所述,经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.
【点睛】
本题考查了绝对值的非负性,数轴上两点间的距离,分类思想,绝对值的化简,正确掌握绝对值化简,灵活运用分类思想是解题的关键.
3、
(1),
(2)见解析
(3)1<<<<
【分析】
(1)根据数轴直接写出A、B所表示的数即可;
(2)根据最小的正整数是1,的倒数是,然后据此在数轴上找到C、D、E即可;
(3)将A、B、C、D、E表示的数从小到大排列,再用 “<”连接即可.
(1)
解:由数轴可知A、B表示的数分别是:,.
故答案为:,.
(2)
解:∵最小的正整数是1,的倒数是
∴C表示的数是1,D表示的数是,
∴如图:数轴上的点C、D、E即为所求.
(3)
解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:
1<<<<.
【点睛】
本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.
4、
(1)78个圆圈
(2)173
【分析】
(1)将代入公式求解即可得;
(2)先计算当时的值,然后根据题意,第19层从左边数第二个圆圈中的数字即可得出.
(1)
解:图1中所有圆圈的个数为:,
当时,
,
答:摆放到第12层时,求共用了78个圆圈;
(2)
先计算当时,
,
第19层从左边数第二个圆圈中的数字为:,
故答案为:173.
【点睛】
题目主要考查有理数的加法及找规律求代数式的值,理解题意,运用代数式求值是解题关键.
5、(1)2xz;(2)ab+1
【分析】
(1)先计算积的乘方,后自左到右依次计算即可,
(2)先计算括号里的,最后计算除法.
【详解】
解:(1)原式
=2xz;
(2)原式=
=
=ab+1.
【点睛】
本题考查了整式的混合运算,熟练掌握运算的顺序,运算公式和运算法则是解题的关键.
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解): 这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。
【真题汇编】中考数学模拟真题 (B)卷(含详解): 这是一份【真题汇编】中考数学模拟真题 (B)卷(含详解),共19页。试卷主要包含了正八边形每个内角度数为,在数2,-2,,中,最小的数为,如果与的差是单项式,那么,如图所示,该几何体的俯视图是等内容,欢迎下载使用。