【真题汇编】2022年河南省周口市中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析)
展开
这是一份【真题汇编】2022年河南省周口市中考数学备考真题模拟测评 卷(Ⅰ)(含答案解析),共24页。试卷主要包含了如图,是的外接圆,,则的度数是,下列二次根式中,最简二次根式是等内容,欢迎下载使用。
2022年河南省周口市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为( )A. B.C. D.2、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A.的 B.祖 C.国 D.我3、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )A.0个 B.1个 C.2个 D.无法确定4、如图,与位似,点O是位似中心,若,,则( )A.9 B.12 C.16 D.365、如图,是的外接圆,,则的度数是( )A. B. C. D.6、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形7、下列二次根式中,最简二次根式是( )A. B. C. D.8、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.9、如图,二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),点C(0,﹣m),其中2<m<3,下列结论:①2a+b>0,②2a+c<0,③方程ax2+bx+c=﹣m有两个不相等的实数根,④不等式ax2+(b﹣1)x<0的解集为0<x<m,其中正确结论的个数为( )A.1 B.2 C.3 D.410、下列方程中,解为的方程是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a<<a+1,则整数a=___.2、如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为______.3、已知n<5,且关于x的方程x2﹣2x﹣2n=0两根都是整数,则n=___.4、如图,中.D是的中点.在边上确定点E的位置.使得,那么的长为_________.5、如图是一个运算程序的示意图,若开始输入x的值为50,我们发现第1次输出的结果为25,第2次输出的结果为32,……则第2022次输出的结果为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,点、分别为的边、的中点,,则______.2、已知抛物线的顶点为,且过点.(1)求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;②若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围.3、计算:(1);(2).4、作图题:(尺规作图,保留作图痕迹)已知:线段a、b,求作:线段,使.5、如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接CF并延长交DE延长线于点K.(1)根据题意,补全图形;(2)求∠CKD的度数;(3)请用等式表示线段AB、KF、CK之间的数量关系,并说明理由. -参考答案-一、单选题1、C【分析】由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.【详解】解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,∴每个B型包装箱可以装书(x+15)本.依题意得:故选:C.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.2、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、C【分析】根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论【详解】解:∵抛物线的顶点坐标为(1,-4),∴ ∴ ∴ 把(1,-4)代入,得, ∴ ∴∴ ∴抛物线与轴有两个交点故选:C【点睛】本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点4、D【分析】根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:与位似,,,,,,,故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.5、C【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】解:在中,,;,,;又,,故选:.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.6、D【分析】当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.【详解】解:如图,连接当为各边中点时,可知分别为的中位线∴∴四边形是平行四边形A中AC=BD,则,平行四边形为菱形;正确,不符合题意;B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;故选D.【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.7、D【分析】根据最简二次根式的条件分别进行判断.【详解】解:A.,不是最简二次根式,则A选项不符合题意;B.,不是最简二次根式,则B选项不符合题意;C.,不是最简二次根式,则C选项不符合题意;D.是最简二次根式,则D选项符合题意;故选:D.【点睛】题考查了最简二次根式:掌握最简二次根式的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式)是解决此类问题的关键.8、A【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.9、C【分析】利用二次函数的对称轴方程可判断①,结合二次函数过 可判断②,由与有两个交点,可判断③,由过原点,对称轴为 求解函数与轴的另一个交点的横坐标,结合原二次函数的对称轴及与轴的交点坐标,可判断④,从而可得答案.【详解】解: 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0), 抛物线的对称轴为: 2<m<3,则 而图象开口向上 即 故①符合题意; 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0), 则 则 故②符合题意; 与有两个交点, 方程ax2+bx+c=﹣m有两个不相等的实数根,故③符合题意;关于对称, 过原点,对称轴为 该函数与抛物线的另一个交点的横坐标为: 不等式ax2+(b﹣1)x<0的解集不是0<x<m,故④不符合题意;综上:符合题意的有①②③故选:C【点睛】本题考查的是二次函数的图象与性质,利用二次函数的图象判断及代数式的符号,二次函数与一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.10、B【分析】把x=5代入各个方程,看看是否相等即可【详解】解:A. 把x=5代入得:左边=8,右边=5,左边≠右边,所以,不是方程的解,故本选项不符合题意;B. 把x=5代入得:左边=3,右边=3,左边=右边,所以,是方程的解,故本选项符合题意;C. 把x=5代入得:左边=15,右边=10,左边≠右边,所以,不是方程的解,故本选项不符合题意;D. 把x=5代入得:左边=7,右边=3,左边≠右边,所以,不是方程的解,故本选项不符合题意;故选:B【点睛】本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键二、填空题1、3【分析】估算出的取值范围即可求出a的值.【详解】解:∵,∴3<<4,∵a<<a+1,∴a=3,故答案为:3.【点睛】此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.2、(0,)【分析】先根据题意得出OA=6,OC=2,再根据勾股定理计算即可.【详解】解:由题意可知:AC=AB,∵A(6,0),C(-2,0)∴OA=6,OC=2,∴AC=AB=8,在Rt△OAB中,,∴B(0,).故答案为:(0,).【点睛】本题考查勾股定理、坐标与图形、熟练掌握勾股定理是解题的关键.3、或或或【分析】先利用方程有两根求解结合已知条件可得再求解方程两根为结合两根为整数,可得为完全平方数,从而可得答案.【详解】解:关于x的方程x2﹣2x﹣2n=0有两根, x2﹣2x﹣2n=0, 而两个根为整数,则为完全平方数,或或或 解得:或或或 故答案为:或或或【点睛】本题考查的是一元二次方程根的判别式,利用公式法解一元二次方程,熟练的解一元二次方程是解本题的关键.4、##【分析】根据相似三角形的性质可以得到,由D是AC的中点,AC=4,得到,则,由此即可得到答案.【详解】解:∵△ADE∽△ABC,∴,∵D是AC的中点,AC=4,∴,∴,∴,故答案为:.【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的性质是解题的关键.5、2【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【详解】解:由设计的程序知,依次输出的结果是25,32,16,8,4,2,1,8,4,2,,发现从第4个数开始,以8,4,2,1循环出现,则,,故第2022次输出的结果是2.故答案为:2.【点睛】本题考查数字的变化类,解题的关键是明确题意,发现数字的变化特点,求出相应的输出结果.三、解答题1、6【分析】根据三角形中位线定理解答即可.【详解】解:∵D,E分别是△ABC的边AB,BC的中点,∴DE是△ABC的中位线,∴AC=2DE=6,故答案为:6.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2、(1)(2)①②【分析】(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;(2)①平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,,,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;②由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可(1)解:∵的顶点式为∴由题意得解得(舍去),,,∴抛物线的解析式为.(2)解:①平移后的解析式为∴对称轴为直线∴设点坐标到对称轴距离为,点坐标到对称轴距离为∴,∵∴解得∴点坐标为将代入解析式解得∴的值为8.②解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,∴解得 ∵时,均有∴解得∴的取值范围为.【点睛】本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握.3、(1)(2)【分析】(1)先把括号内的二次根式化简及除法运算,再计算二次根式的除法运算,最后合并同类二次根式即可;(2)先计算括号内的二次根式的减法运算,再计算二次根式的除法运算,从而可得答案.(1)解: (2)解: 【点睛】本题考查的是二次根式的混合运算,掌握“二次根式的混合运算的运算顺序”是解本题的关键.4、线段AB为所作,图形见详解.【分析】先作射线AN,再截取DA=a,DC=CB=b,则线段AB满足条件.【详解】解:如图, 作射线AN,在射线AN上截取AD=a在线段DA上顺次截取DC=CB=b,∴AB=AD-BC-CD=a-b-b=a-2b线段AB为所作.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.5、(1)见解析(2)45°(3)KF2+CK2=2AB2,见解析【分析】(1)按题意要求出画出图形即可;(2)过点D作DH⊥CK于点H,由轴对称的性质得出DA=DF,∠ADE=∠FDE,由正方形的性质得出∠ADC=90°,AD=DC,证出∠EDH=45°,由直角三角形的性质可得出结论;(3)由轴对称的性质得出AK=KF,∠AKE=∠CKD=45°,由正方形的性质得出∠B=90°,∠BAC=45°,由等腰直角三角形的性质及勾股定理可得出结论.(1)如图,(2)过点D作DH⊥CK于点H,∵点A关于DE的对称点为点F,∴DA=DF,∠ADE=∠FDE,∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC,∴DF=DC,∵DH⊥CK,∴∠FDH=∠CDH,∠DHF=90°,∴∠ADE+∠FDE+∠FDH+∠CDH=90°,∴∠FDE+∠FDH=45°,即∠EDH=45°,∴∠CKD=90°-∠EDH=45°;(3)线段AB、KF、CK之间的数量关系为:KF2+CK2=2AB2.证明:∵点A关于DE的对称点为点F,∴AK=KF,∠AKE=∠CKD=45°,∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,在Rt△ABC中,∠B=90°,∴AC=AB,在Rt△AKC中,∠AKC=90°,∴AK2+CK2=AC2,∴KF2+CK2=2AB2.【点睛】本题考查了正方形的性质,轴对称的性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
相关试卷
这是一份【真题汇总卷】2022年河南省周口市中考数学模拟真题测评 A卷(含答案解析),共27页。
这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
这是一份【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析),共24页。试卷主要包含了下列各数中,是不等式的解的是,若单项式与是同类项,则的值是等内容,欢迎下载使用。