【真题汇编】2022年陕西省宝鸡市中考数学一模试题(含答案详解)
展开2022年陕西省宝鸡市中考数学一模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,则∠A的补角等于( )
A. B. C. D.
2、在下列运算中,正确的是( )
A.a3•a2=a6 B.(ab2)3=a6b6
C.(a3)4=a7 D.a4÷a3=a
3、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A. B. C. D.
4、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).
A. B.
C. D.
5、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.
A. B. C. D.
6、若反比例函数的图象经过点,则该函数图象不经过的点是( )
A.(1,4) B.(2,-2) C.(4,-1) D.(1,-4)
7、下列二次根式中,不能与合并的是( )
A. B. C. D.
8、如图,与交于点,与互余,,则的度数为( )
A. B. C. D.
9、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
10、已知,则的值为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是体检时的心电图,其中横坐标表示时间,纵坐标表示心脏部位的生物电流,它们是两个变量.在心电图中, ___(填“是”或“不是” 的函数.
2、如图,,,,,,则_______.
3、如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为______.
4、最简二次根式3与是同类二次根式,则x的值是 ___.
5、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.
三、解答题(5小题,每小题10分,共计50分)
1、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离与行驶时间之间的关系如下图所示.
(1)______,______.
(2)请你求出甲车离出发地郑州的距离与行驶时间之间的函数关系式.
(3)求出点的坐标,并说明此点的实际意义.
(4)直接写出甲车出发多长时间两车相距40千米.
2、已知抛物线y=﹣x2+x.
(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;
(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.
①若n<﹣5,判断y1与y2的大小关系并说明理由;
②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.
3、如图所示,下图是由七块积木搭成,这几块积木都是相同的正方体,利用下面方格纸中的纵横线,画出从这个图形的正面看、左面看和上面看的图形.
4、已知a+b=5,ab=﹣2.求下列代数式的值:
(1)a2+b2;
(2)2a2﹣3ab+2b2.
5、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.
图1 图2
(1)如图1,求证:;
(2)如图2,若,,求的值;
(3)如图1,当,,求时,求的值.
-参考答案-
一、单选题
1、C
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
2、D
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
3、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
4、B
【分析】
先判断再结合一次函数,二次函数的增减性逐一判断即可.
【详解】
解:
同理:
当时,随的增大而减小,
由可得随的增大而增大,故A不符合题意;
的对称轴为: 图象开口向下,
当时,随的增大而减小,故B符合题意;
由可得随的增大而增大,故C不符合题意;
的对称轴为: 图象开口向上,
时,随的增大而增大,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.
5、B
【分析】
设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.
【详解】
解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,
依题意得:2x=3(x-2),
解得x=6
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.
6、A
【分析】
由题意可求反比例函数解析式,将点的坐标一一打入求出xy的值,即可求函数的图象不经过的点.
【详解】
解:因为反比例函数的图象经过点,
所以,
选项A,该函数图象不经过的点(1,4),故选项A符合题意;
选项B,该函数图象经过的点(2,-2),故选项B不符合题意;
选项C,该函数图象经过的点(4,-1),故选项C不符合题意;
选项B,该函数图象经过的点(1,-4),故选项D不符合题意;
故选A.
【点睛】
考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.
7、B
【分析】
先把每个选项的二次根式化简,再逐一判断与的被开方数是否相同,被开方数相同则能合并,不相同就不能合并,从而可得答案.
【详解】
解:能与合并, 故A不符合题意;
不能与合并,故B不符合题意;
能与合并, 故C不符合题意;
能与合并, 故D不符合题意;
故选B
【点睛】
本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.
8、B
【分析】
先由与互余,求解 再利用对顶角相等可得答案.
【详解】
解:与互余,
,
,
,
,
故选:B.
【点睛】
本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.
9、B
【分析】
根据二次函数图象左加右减,上加下减的平移规律进行求解.
【详解】
解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
再向上平移5个单位长度,得:y=(x﹣3)2+5,
故选:B.
【点睛】
本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
10、A
【分析】
由设,代入计算求解即可.
【详解】
解:∵
∴设
∴
故选:A
【点睛】
本题主要考查发比例的性质,熟练掌握比例的性质是解答本题的关键.
二、填空题
1、是
【分析】
根据函数的定义判断即可.
【详解】
解:两个变量和,变量随的变化而变化,
且对于每一个,都有唯一值与之对应,
是的函数.
故答案为:是.
【点睛】
本题考查了函数的理解即两个变量和,变量随的变化而变化,
且对于每一个,都有唯一值与之对应,正确理解定义是解题的关键.
2、17
【分析】
由“”可证,可得,,即可求解.
【详解】
解:,
,
在和中,
,
,
,,
,
故答案为:17.
【点睛】
本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.
3、(0,)
【分析】
先根据题意得出OA=6,OC=2,再根据勾股定理计算即可.
【详解】
解:由题意可知:AC=AB,
∵A(6,0),C(-2,0)
∴OA=6,OC=2,
∴AC=AB=8,
在Rt△OAB中,,
∴B(0,).
故答案为:(0,).
【点睛】
本题考查勾股定理、坐标与图形、熟练掌握勾股定理是解题的关键.
4、
【分析】
由同类二次根式的定义可得再解方程即可.
【详解】
解:最简二次根式3与是同类二次根式,
解得:
故答案为:
【点睛】
本题考查的是同类二次根式的含义,掌握“利用同类二次根式的定义求解字母参数的值”是解本题的关键.
5、0
【分析】
根据一次函数的定义,列出关于m的方程和不等式进行求解即可.
【详解】
解:由题意得,|m-1|=1且m-2≠0,
解得:m=2或m=0且m≠2,
∴m=0.
故答案为:0.
【点睛】
本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.
三、解答题
1、
(1)8,6.5
(2)
(3)点P的坐标为(5,360),点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米
(4)当甲车出发2.4小时或2.8小时或小时两车相距40千米
【分析】
(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m;然后算出乙车从西安到郑州需要的时间即可求出n;
(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;
(3)根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可;
(4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可.
(1)
解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止,
∴直线的函数图像是乙车的,折线的函数图像是甲车的,
由函数图像可知,甲车4小时从郑州行驶到西安走了480千米,
∴甲车的速度=480÷4=120千米/小时,
∴甲车从西安返回郑州需要的时间=480÷120=4小时,
∴m=4+4=8;
∵乙车的速度为80千米/小时,
∴乙车从西安到达郑州需要的时间=480÷80=6小时,
∵由函数图像可知乙车是在甲车出发0.5小时后出发,
∴n=0.5+6=6.5,
故答案为:8,6.5;
(2)
解:当甲车从郑州去西安时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
当甲车从西安返回郑州时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
∴;
(3)
解:根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,
∵此时甲车处在返程途中,
∴,
解得,
∴,
∴点P的坐标为(5,360),
∴点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;
(4)
解:当甲车在去西安的途中,甲乙两车相遇前,
由题意得:,
解得;
当甲车在去西安的途中,甲乙两车相遇后,
由题意得:,
解得;
当甲车在返回郑州的途中,乙未到郑州时,
由题意得:
解得(不符合题意,舍去),
当甲车在返回郑州的途中,乙已经到郑州时,
由题意得:
解得;
综上所述,当甲车出发2.4小时或2.8小时或小时两车相距40千米.
【点睛】
本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键.
2、
(1)直线x=1,(0,0)
(2)①y1<y2,理由见解析;②﹣1<n<﹣
【分析】
(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;
(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;
(3)分两种情况讨论,列出不等式组可求解.
(1)
∵y=﹣x2+x,
∴对称轴为直线x=﹣=1,
令x=0,则y=0,
∴抛物线与y轴的交点坐标为(0,0);
(2)
xA﹣xB=(3n+4)﹣(2n﹣1)=n+5,xA﹣1=(3n+4)﹣1=3n+3=3(n+1),xB﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).
①当n<﹣5时,xA﹣1<0,xB﹣1<0,xA﹣xB<0.
∴A,B两点都在抛物线的对称轴x=1的左侧,且xA<xB,
∵抛物线y=﹣x2+x开口向下,
∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.
∴y1<y2;
②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,
由题意可得,
∴不等式组无解,
若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,
由题意可得:,
∴﹣1<n<﹣,
综上所述:﹣1<n<﹣.
【点睛】
本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.
3、图见解析
【分析】
从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1;画出从正面,左面,上面看,得到的图形即可.
【详解】
解:如图所示:
【点睛】
本题考查了作图−−三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.
4、
(1)29;
(2)64
【分析】
(1)利用已知得出(a+b)2=25,进而化简求出即可;
(2)利用(1)中所求,进而求出即可.
(1)
解:(1)∵a+b=5,ab=﹣2,∴(a+b)2=25,
则a2+b2+2×(﹣2)=25,
故a2+b2=29;
(2)
(2)2a2﹣3ab+2b2
=2(a2+b2)﹣3ab
=2×29﹣3×(﹣2)
=64.
【点睛】
本题考查了完全平方公式的应用,解题的关键是正确利用完全平方公式求出.
5、
(1)证明见解析
(2)
(3)
【分析】
(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
(1)
解:∵四边形EFGH是平行四边形
∴
∴
∵四边形ABCD是平行四边形
∴
∴
在和中
∴
∴
∴
∴;
(2)
解:如图所示,作于M点,设
∵四边形和四边形都是平行四边形,
∴四边形和四边形都是矩形
∴
∴
∵
∴,
∴
∴
∴
∵
∴
由(1)得:
∴
∴;
(3)
解:如图所示,过点E作于M点
∵四边形ABCD是平行四边形
∴
∵
∴,即
∵
∴
∴
∴
∴
设
∵
∴
∴
∴
由(1)得:
∴
∴
过点E作,交BD于N
∵
∴
∴
∴
设
∴
∴
∵
∴
∵
∴
∴
∵
∴
∴
∴
解得:或(舍去)
∴
由勾股定理得:
∴.
【点睛】
此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
【历年真题】中考数学一模试题(含答案及详解): 这是一份【历年真题】中考数学一模试题(含答案及详解),共24页。试卷主要包含了已知等腰三角形的两边长满足+,有下列四种说法,下列说法中正确的个数是等内容,欢迎下载使用。
【真题汇编】2022年陕西省宝鸡市中考数学真题模拟测评 (A)卷(含答案解析): 这是一份【真题汇编】2022年陕西省宝鸡市中考数学真题模拟测评 (A)卷(含答案解析),共29页。试卷主要包含了若抛物线的顶点坐标为,已知,则的值为等内容,欢迎下载使用。
【真题汇编】2022年陕西省宝鸡市中考数学二模试题(含答案及详解): 这是一份【真题汇编】2022年陕西省宝鸡市中考数学二模试题(含答案及详解),共21页。试卷主要包含了若,则代数式的值为,方程的解是.等内容,欢迎下载使用。