【真题汇总卷】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )
A.63°B.58°C.54°D.56°
2、下列式中,与是同类二次根式的是( )
A.B.C.D.
3、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1B.2C.3D.4
4、如图,在中,,,则的值为( )
A.B.C.D.
5、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125
6、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )
A.个B.个C.个D.个
7、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣)B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣)D.(2x﹣4﹣)(2x﹣4+)
8、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A.B.133C.200D.400
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
9、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个B.个C.个D.个
10、下列判断错误的是( )
A.若,则B.若,则
C.若,则D.若,则
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
2、小河的两条河岸线a∥b,在河岸线a的同侧有A、B两个村庄,考虑到施工安全,供水部门计划在岸线b上寻找一处点Q建设一座水泵站,并铺设水管PQ,并经由PA、PB跨河向两村供水,其中QP⊥a于点P.为了节约经费,聪明的建设者们已将水泵站Q点定好了如图位置(仅为示意图),能使三条水管长的和最小.已知,,,在A村看点P位置是南偏西30°,那么在A村看B村的位置是_________.
3、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若∠COB=50°,则∠AOD=_______
4、 “x与2的差不大于3”用不等式表示为___.
5、已知一个多边形的内角和比外角和多180°,则它的边数为______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1)(2a﹣b)2﹣b(2a+b);
(2)(﹣a﹣1)÷.
2、在平面直角坐标系xOy中,抛物线上有两点和点.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)用等式表示a与b之间的数量关系,并求抛物线的对称轴;
(2)当时,结合函数图象,求a的取值范围.
3、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.
(1)张红选择A安全检查口通过的概率是 ;
(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.
4、解方程:
(1)3(2x-3)=18-(3-2x) (2)
5、一个正整数k去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与7的商是一个整数,则称正整数k为“尚志数”,把这个商叫做k的尚志系数,记这个商为F(k).如:732去掉个位数字是73.2的2倍与73的和是77,77÷7=11,11是整数,所以732是“尚志数”,732的尚志系数是11,记F(732)=11:
(1)计算:F(204)= ;F(2011)= ;
(2)若m、n都是“尚志数”,其中m=3030+10la,n=400+10b+c(0≤a≤9,0≤b≤9,0≤c≤9,a,b,c是整数),规定:G(m,n)=,当F(m)+F(n)=66时,求G(m,n)的值.
-参考答案-
一、单选题
1、C
【分析】
先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
2、A
【分析】
先根据二次根式的性质化成最简二次根式,再看看被开方数是否相同即可.
【详解】
解:A、,即化成最简二次根式后被开方数相同(都是5),所以是同类二次根式,故本选项符合题意;
B、最简二次根式和的被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
C、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
D、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
故选:A.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了二次根式的性质与化简和同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键.
3、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
4、C
【分析】
由三角函数的定义可知sinA=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可.
【详解】
解:在直角三角形ABC中,∠C=90°
∵sinA=,
∴可设a=5k,c=13k,由勾股定理可求得b=12k,
∴csA=,
故选:C.
【点睛】
本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.
5、D
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
6、A
【分析】
过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.
【详解】
解:过点A作AD⊥BC与D,
∵BD=4,,
∴AD=BD,
∵,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴BC=7,
∴DC=BC-BD=7-4=3,
∴①主视图中正确;
∴左视图矩形的面积为3×6=,
∴②正确;
∴tanC,
∴③正确;
其中正确的个数为为3个.
故选择A.
【点睛】
本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.
7、B
【分析】
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
8、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
9、C
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
10、D
【分析】
根据等式的性质解答.
【详解】
解:A. 若,则,故该项不符合题意;
B. 若,则,故该项不符合题意;
C. 若,则,故该项不符合题意;
D. 若,则(),故该项符合题意;
故选:D.
【点睛】
此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
二、填空题
1、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
2、北偏西60°
【分析】
根据题意作出图形,取的中点,连接,过点作,过点作,交的延长线于点,作关于的对称点,平移至处,则最小,即三条水管长的和最小,进而找到村的位置,根据方位角进行判断即可.
【详解】
解:如图,取的中点,连接,过点作,过点作,交的延长线于点
作关于的对称点,平移至处,则最小,即三条水管长的和最小,
此时三点共线,
点在的延长线上,
在A村看点P位置是南偏西30°,
,
是等边三角形
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
即在A村看B村的位置是北偏西60°
故答案为:北偏西60°
【点睛】
本题考查了轴对称的性质,方位角的计算,等边三角形的性质与判定,等边对等角,根据题意作出图形是解题的关键.
3、130°130度
【分析】
先计算出,再根据可求出结论.
【详解】
解:∵,
∴
∵
∴
故答案为:130°
【点睛】
本题考查了角的计算及余角的计算,熟悉图形是解题的关键.
4、x-2≤3
【分析】
首先表示出x与2的差为(x-2),再小于等于3,列出不等式即可.
【详解】
解:由题意可得:x-2≤3.
故答案为:x-2≤3.
【点睛】
此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词,选准不等号.
5、5
【分析】
设边数为n,由题意知多边形的内角和为,用边数表示为计算求解即可.
【详解】
解:设边数为
∵多边形的外角和为
∴多边形的内角和为
∴
解得
故答案为:5.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了多边形的内角和与外角和.解题的关键在于求解多边形的内角和.
三、解答题
1、
(1)4a2-6ab
(2)
【分析】
(1)先利用完全平方公式和单项式乘多项式的运算法则计算乘方和乘法,然后再算加减;
(2)先将小括号内的式子进行通分计算,然后再算括号外面的.
【小题1】
解:原式=4a2-4ab+b2-2ab-b2
=4a2-6ab;
【小题2】
原式=
=
=
【点睛】
本题考查整式的混合运算,分式的混合运算,掌握完全平方公式的结构及通分和约分的技巧是解题关键.
2、
(1)b=4a,-2
(2)或.
【分析】
(1)将(-1,0)代入函数解析式可得,则抛物线对称轴为直线.
(2)由点B坐标可得AB所在直线为,过点B作轴交x轴于点C,可得AB为等腰直角三角形的斜边,从而可得点B当时和时点B的坐标为(2,3)或(4,3)或(-4,-3)或(-6,-5),再分类讨论抛物线开口向上或向下求解.
(1)
将(-1,0)代入得,
∴,
∴抛物线对称轴为直线.
(2)
∵点B坐标为,
∴点B所在直线为,
∴点A在直线上,
过点B作轴交x轴于点C,
则,,
∴AB为等腰直角三角形的斜边,
∴当时,,当时,,
∴或,
∴点B坐标为(2,3)或(4,3)或或,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当时,抛物线开口向上,
∵抛物线经过点(-1,0),对称轴为直线,
∴抛物线经过点(-3,0),
∴抛物线开口向上时,抛物线不经过,,
将(2,3)代入得,
解得,
将(4,5)代入得,
解得,
∴.
时,抛物线开口向下,抛物线不经过,,
将代入得,
解得,
将代入得,
解得,
∴,
综上所述,或.
【点睛】
本题考查了抛物线与系数的关系,对称轴,抛物线的解析式,一次函数与二次函数的交点,熟练掌握抛物线的性质,灵活运用分类思想,待定系数法是解题的关键.
3、
(1)
(2)
【分析】
(1)根据概率公式求解即可;
(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.
【小题1】
解:(1)∵有A.B、C三个闸口,
∴张红选择A安全检查口通过的概率是,
故答案为:;
【小题2】
根据题意画图如下:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,
则她俩选择相同安全检查口通过的概率是.
【点睛】
本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.
4、(1)6:(2)
【分析】
(1)按去括号、移项、合并同类项、系数化为1的步骤解答即可;
(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤解答即可.
【详解】
解:(1)3(2x-3)=18-(3-2x)
去括号得:6x-9=18-3+2x
移项得:4x=24
系数化为1得:x=6;
(2)
去分母得:6-(2-x)=3(x+1)
去括号得:6-2+x=3x+3
移项得:-2x=-1
系数化为1得:x=.
【点睛】
本题主要考查了解一元一次方程,解一元一次方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1.
5、
(1)4;29
(2)或0或
【分析】
(1)利用“尚志数”的定义即可求得结论;
(2)利用m=3030+101a是“尚志数”,根据0≤a≤9,a为整数可求得a=1或8,进而求得F(m)的值,利用F(m)+F(n)=66,可得F(n),再利用“尚志数”的定义得出关于b,c的式子,利用0≤b≤9,0≤c≤9,b,c是整数可求得b,c的值,利用公式G(m,n)=,可求结论.
【小题1】
解:∵20+4×2=28,28÷7=4,
∴F(204)=4.
∵201+1×2=203,203÷7=29,
∴F(2011)=29.
故答案为:4;29;
【小题2】
∵m=3030+101a=3000+100a+30+a,
∴F(m)=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由题干中的定义可知为整数,且0≤a≤9,
∵a=1时,=2,a=8时,=14,
∴a=1或a=8.
①当a=1时,F(m)=43+2=45,
∵F(m)+F(n)=66,
∴F(n)=21.
∵F(n)=,
∴=21.
∴b+2c=107.
∵0≤b≤9,0≤c≤9,
∴不存在b,c满足b+2c=107.
②当a=8时,F(m)=43+14=57,
∵F(m)+F(n)=66,
∴F(n)=9.
∵F(n)=,
∴=9.
∴b+2c=23.
∵0≤b≤9,0≤c≤9,
∴或或,
∴当a=8,b=5,c=9时,G(m,n)=;
当a=8,b=7,c=8时,G(m,n)=;
当a=8,b=9,c=7时,G(m,n)=.
【点睛】
本题主要考查了因式分解的应用,本题是阅读型题目,准确理解题干中的定义并熟练应用是解题的关键.
【真题汇总卷】2022年中考数学模拟定向训练 B卷(精选): 这是一份【真题汇总卷】2022年中考数学模拟定向训练 B卷(精选),共21页。试卷主要包含了若,则的值是,观察下列图形,下列关于整式的说法错误的是,下列计算正确的是,一组样本数据为1等内容,欢迎下载使用。
【真题汇总卷】2022年北京市平谷区中考数学模拟定向训练 B卷(含答案详解): 这是一份【真题汇总卷】2022年北京市平谷区中考数学模拟定向训练 B卷(含答案详解),共24页。试卷主要包含了抛物线的顶点坐标是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市平谷区中考数学模拟定向训练 B卷(含答案解析): 这是一份【真题汇总卷】2022年北京市平谷区中考数学模拟定向训练 B卷(含答案解析),共27页。试卷主要包含了已知和是同类项,那么的值是,下列计算错误的是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。