![【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析)01](http://img-preview.51jiaoxi.com/2/3/12677514/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析)02](http://img-preview.51jiaoxi.com/2/3/12677514/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析)03](http://img-preview.51jiaoxi.com/2/3/12677514/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析)
展开中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
2、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
3、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
4、下列各数中,是不等式的解的是( )
A.﹣7 B.﹣1 C.0 D.9
5、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )
A.4 B.3 C.2 D.1
6、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
7、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )
A. B. C. D.
8、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2 B.(x-2)2=7 C.(x+2)2=1 D.(x-2)2=1
9、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
10、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )
A. B.4 C. D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
2、把有理数a代入得到,称为第一次操作,再将作为a的值代入得到,称为第二次操作,依此类推……,若,则经过第2022次操作后得到的是______.
3、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为______.
4、已知某数的相反数是﹣2,那么该数的倒数是 __________________.
5、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.
三、解答题(5小题,每小题10分,共计50分)
1、已知过点的抛物线与坐标轴交于点A,C如图所示,连结AC,BC,AB,第一象限内有一动点M在抛物线上运动,过点M作交y轴于点P,当点P在点A上方,且与相似时,点M的坐标为______.
2、(1)解方程:x²-2x-8=0;
(2)计算:5sin60°-cos245°.
3、如图,如图,一楼房AB后有一假山,CD的坡度为i=1:2,山坡坡面上E点处有一休息亭,测得假山脚与楼房水平距离BC=24米,与亭子距离CE=8米,小丽从楼房房顶测得E的俯角为45°.
(1)求点E到水平地面的距离;
(2)求楼房AB的高.
4、解方程:.
5、在平面直角坐标系中,对于、两点,用以下方式定义两点间的“极大距离”;若,则;若,则.例如:如图,点,则.
(理解定义)
(1)若点、,则______.
(2)在点、、、中,到坐标原点的“极大距离”是2的点是______.(填写所有正确的字母代号)
(深入探索)
(3)已知点,,为坐标原点,求的值.
(拓展延伸)
(4)经过点的一次函数(、是常数,)的图像上是否存在点,使,为坐标原点,直接写出点的个数及对应的的取值范围.
-参考答案-
一、单选题
1、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
2、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
3、B
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
4、D
【分析】
移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.
【详解】
解:移项得:,
∴9为不等式的解,
故选D.
【点睛】
本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.
5、C
【分析】
非负整数即指0或正整数,据此进行分析即可.
【详解】
解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,
故选:C.
【点睛】
本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.
6、C
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
7、D
【分析】
旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解
【详解】
解:旋转阴影部分,如图,
∴该点取自阴影部分的概率是
故选:D
【点睛】
本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
8、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
9、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
10、A
【分析】
根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算
【详解】
解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,
,2,,3四个数循环出现,
表示的数是
与表示的两个数之积是
故选A
【点睛】
本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.
二、填空题
1、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cos60°=6,AH=AB•sin60°=6,
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
2、-10
【分析】
先确定第1次操作,;第2次操作,;第3次操作,;第4次操作,;第5次操作,;第6次操作,;…,观察得到第4次操作后,偶数次操作结果为;奇数次操作结果为,据此解答即可.
【详解】
第1次操作,;
第2次操作,;
第3次操作,;
第4次操作,;
第5次操作,;
第6次操作,;
第7次操作,;
…
第2020次操作,.
故答案为:.
【点睛】
本题考查了绝对值和探索规律.含绝对值的有理数减法,解题的关键是先计算,再观察结果是按照什么规律变化的探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
3、4.57×106
【分析】
将一个数表示成a×10n,1≤a<10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答案.
【详解】
解:根据科学记数法的定义,4570000=4.57×106,
故答案为:4.57×106.
【点睛】
本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.
4、
【分析】
根据相反数与倒数的概念可得答案.
【详解】
解:∵某数的相反数是﹣2,
∴这个数为2,
∴该数的倒数是.
故答案为:.
【点睛】
本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.
5、140
【分析】
根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.
【详解】
解:∵∠A′NM=20°,∠CNE=∠A′NM,
∴∠CNE=20°,
∵DE∥BC,
∴∠DEN=∠CNE=20°,
由翻折性质得:∠AED=∠DEN=20°,
∴∠AEN=40°,
∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.
故答案为:140
【点睛】
本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.
三、解答题
1、或
【分析】
运用待定系数法求出函数关系式,求出点A,C的坐标,得出AC=,BC=,AB=,判断为直角三角形,且, 过点M作MG⊥y轴于G,则∠MGA=90°,设点M的横坐标为x,则MG=x,求出含x的代数式的点M的坐标,再代入二次函数解析式即可.
【详解】
把点B (4,1)代入,得:
∴
抛物线的解析式为
令x=0,得y=3,
∴A(0,3)
令y=0,则
解得,
∴C(3,0)
∴AC=
∵B(4,1)
∴BC=,AB=
∴
∴为直角三角形,且,
过点M作MG⊥y轴于G,则∠MGA=90°,
设点M的横坐标为x,由M在y轴右侧可得x>0,则MG=x,
∵PM⊥MA,∠ACB=90°,
∴∠AMP=∠ACB=90°,
①如图,当∠MAP=∠CBA时,则△MAP∽△CBA,
∴
同理可得,
∴
∴AG=MG=x,则M(x,3+x),
把M(x,3+x)代入y=x2-x+3,得
x2-x+3=3+x,
解得,x1=0(舍去),x2=,
∴3+x=3+
∴M(,);
②如图,当∠MAP=∠CAB时,则△MAP∽△CAB,
∴
同理可得,AG=3MG=3x,
则P(x,3+3x),
把P(x,3+3x)代入y=x2-x+3,
得x2-x+3=3+3x,
解得,x1=0(舍去),x2=11,
∴M(11,36),
综上,点M的坐标为(11,36)或(,)
【点睛】
本题考查了待定系数法求解析式,相似三角形的判定与性质等等知识,解题关键是注意分类讨论思想在解题过程中的运用.
2、(1);(2)
【分析】
(1)利用因式分解法求解;
(2)代入特殊角的三角函数值计算即可.
【详解】
解:(1)x²-2x-8=0
∴;
(2)原式=
=.
【点睛】
此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键.
3、
(1)8米
(2)48米
【分析】
(1)过点E作EF⊥BC的延长线于F,根据CD的坡度为i=1:2,CE=8米,可得EF=8米,CF=16米;
(2)过E作EH⊥AB于点H,根据锐角三角函数即可求出AH,进而可得AB.
(1)
解:过点E作的延长线于F.
在中,
∵CD的坡度,
∴
∵,
∴,米,
∴点E到水平地面的距离为8米.
(2)
解:作于点H,
∵,,
∴四边形BFEH为矩形;
∴,,
∵,,
∴,
在中,∵,
∴,
∴.
∴楼房AB的高为48米.
【点睛】
本题考查了解直角三角形的应用−仰角俯角问题,坡度坡角问题,解决本题的关键是掌握仰角俯角定义.
4、
【分析】
先移项,再计算即可求解.
【详解】
解:
,
解得: .
【点睛】
本题主要考查了解方程,熟练掌握解方程的基本步骤是解题的关键.
5、(1);(2);(3)或;(4)当或时,满足条件的点有1个,当时,满足条件的点有2个,当时,不存在满足条件的点,当时,满足条件的点有2个,当时,不存在满足条件的点.
【分析】
(1)根据新定义分别计算 再比较即可得到答案;
(2)根据新定义分别计算点、、、中,到坐标原点的“极大距离”,从而可得答案;
(3)由,先求解 结合 再列绝对值方程即可;
(4)先求解直线的解析式为: 再判断在正方形的边上,且 再结合函数图象进行分类讨论即可.
【详解】
解:(1) 点、,
而
(2) 点
同理可得:、、到原点的“极大距离”为:
故答案为:
(3),
而
解得:或
(4)如图,直线过
则
直线为:
,为坐标原点,
在正方形的边上,且
当直线过时,
则: 解得:
当直线过时,
则: 解得:
结合函数图象可得:当或时,满足条件的点有1个,
当时,满足条件的点有2个,
当时,不存在满足条件的点,
当时,满足条件的点有2个,
当时,不存在满足条件的点,
【点睛】
本题考查的是新定义情境下的一次函数的应用,坐标与图形,理解新定义,结合数形结合解题是解题的关键.
【真题汇编】2022年中考数学真题模拟测评 (A)卷(含答案及解析): 这是一份【真题汇编】2022年中考数学真题模拟测评 (A)卷(含答案及解析),共27页。试卷主要包含了若,,且a,b同号,则的值为,在以下实数中,下列计算错误的是,观察下列图形等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟专项测评 A卷(含答案及解析): 这是一份【真题汇编】最新中考数学模拟专项测评 A卷(含答案及解析),共25页。试卷主要包含了观察下列图形,下列各组图形中一定是相似形的是,下列计算中正确的是等内容,欢迎下载使用。
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。