![2021-2022学年度沪科版九年级数学下册第25章投影与视图专项测评试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12678012/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第25章投影与视图专项测评试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12678012/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第25章投影与视图专项测评试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12678012/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第25章 投影与视图综合与测试当堂达标检测题
展开
这是一份初中数学第25章 投影与视图综合与测试当堂达标检测题,共19页。试卷主要包含了下列立体图形的主视图是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体,从上面看到的形状图是( )
A.B.
C.D.
2、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是( )
A.B.
C.D.
3、水平放置的下列几何体,主视图不是矩形的是( )
A.B.
C.D.
4、如图,将一块含30°角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB=10,BE=3,则AB在直线m上的正投影的长是( )
A.5B.4C.3+4D.4+4
5、如图,是空心圆柱体,其主视图是下列图中的( )
A.B.C.D.
6、棱长为a的小正方体按照如图所示的规律摆放,从上面看第100个图,得到的平面图形的面积为( )
A.100aB.C.D.
7、如图所示的工件中,该几何体的俯视图是( )
A.B.C.D.
8、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为( )
A.B.
C.D.
9、下列立体图形的主视图是( )
A.B.C.D.
10、下列几何体中,俯视图为三角形的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、长方体的长为,宽为,高为,点离点,一只蚂蚁如果要沿着长方体的表面从点爬到点去吃一滴蜜糖,需要爬行的最短距离是_________.
2、如图,用小立方块搭一几何体,从正面看和从上面看得到的图形如图所示,这样的几何体至少要_____个立方块.
3、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为_____cm2.
4、三视图中的三个视图完全相同的几何体可能是________(列举出两种即可).
5、如图是某圆柱体果罐,它的主视图是边长为的正方形,该果罐侧面积为_____.
三、解答题(5小题,每小题10分,共计50分)
1、补全如图的三视图.
2、如图,是由小立方块塔成的几何体,请画出这个几何体从正面、左面、上面三个方面看到的形状图:
3、马路边上有一棵树AB,树底A距离护路坡CD的底端D有3米,斜坡CD的坡角为60度,小明发现,下午2点时太阳光下该树的影子恰好为AD,同时刻1米长的竹竿影长为0.5米,下午4点时又发现该树的部分影子落在斜坡CD上的DE处,且,如图所示.
(1)树AB的高度是________米;
(2)求DE的长.
4、如图是由4块小立方块所搭成的几何体从上面看到的图形,小正方形中的数字表示该位置小立方块的个数,请画出它的左视图和主视图.
5、如图所示的几何体是由几个相同的小正方体排成2行组成的.
(1)填空:这个几何体由_______个小正方体组成;
(2)画出该几何体的三个视图.
(3)若每个小正方体的边长为1cm,则这个几何体的表面积为 cm2
-参考答案-
一、单选题
1、B
【分析】
找出从几何体的上面看所得到的视图即可.
【详解】
解:从上面看到的形状图是,
故选:B
【点睛】
此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键.
2、C
【分析】
左视图是从左边看得到的视图,结合选项即可得出答案.
【详解】
解:A是俯视图,B、D不是该几何体的三视图,C是左视图.
故选:C.
【点睛】
本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
3、C
【分析】
根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断
【详解】
解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形
故C选项符合题题意,
故选C
【点睛】
本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键.
4、C
【分析】
根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明△ACD∽△CBE,再根据相似三角形的性质可得CD的长,进而得出DE的长.
【详解】
解:在Rt△ABC中,∠ABC=30°,AB=10,
∴AC=AB=5,BC=AB•cs30°=10×,
在Rt△CBE中,CE=,
∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
∴Rt△ACD∽Rt△CBE,
∴,
∴CD=,
∴DE=CD+BE=,
即AB在直线m上的正投影的长是,
故选:C.
【点睛】
本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键.
5、C
【分析】
从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.
【详解】
主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.
本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.
故选:C
【点睛】
本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.
6、B
【分析】
先探究第100个图形俯视图所看到的小正方形的个数,再结合每个小正方形的面积为 从而可得答案.
【详解】
解:(1)∵第1个图有1层,共1个小正方体,
第2个图有2层,第2层正方体的个数为1+2=3,
第3个图有3层,第3层正方体的个数为1+2+3=6,
第n层时,正方体的个数为1+2+3+…+n=n(n+1),
当n=100时,第100层的正方体的个数为×100×101=5050,
从上面看第100个图,看到了5050个小正方形,所以面积为:
故选B
【点睛】
本题考查的是三视图,俯视图的面积,掌握“正方体堆砌图形的俯视图”是解本题的关键.
7、B
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个同心圆,外圆是实线,内圆是虚线,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.
8、B
【分析】
几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解
【详解】
解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,
所以这个几何体从正面看到的平面图形为
故选:B
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
9、A
【分析】
主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.
【详解】
解:主视图是从正面所看到的图形,是:
故选:A
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
10、D
【分析】
从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.
【详解】
从上方朝下看只有D选项为三角形.
故选:D.
【点睛】
本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.
二、填空题
1、25cm
【分析】
要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
【详解】
解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:
∵长方体的宽为10,高为20,点B与点C的距离是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根据勾股定理得:AB==25;
只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴BD=CD+BC=20+5=25,AD=10,
在直角三角形ABD中,根据勾股定理得:AB=;
只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:
∵长方体的宽为10,高为20,点B离点C的距离是5,
∴AC=CD+AD=20+10=30,
在直角三角形ABC中,根据勾股定理得:AB=;
∵
∴蚂蚁爬行的最短距离是25cm,
故答案为:25cm.
【点睛】
此题考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可,正确掌握勾股定理及长方体的不同展开方式是解题的关键.
2、12
【分析】
主视图是从正面看到的,俯视图是从上面看到的,据此求解即可.
【详解】
解:根据俯视图可得该几何体最下面一层有6个小立方块;
从主视图可知最上面一层至少需要3个小立方块,中间一层至少需要3个小立方块,
所以,这样的几何体最少需要3+3+6=12(个)小立方块;
故答案为:12.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖”就更容易得到答案.
3、
【分析】
有顺序的计算上下面,左右面,前后面的表面积之和即可.
【详解】
解:4×2+3×2+4×2=22(cm2).
所以该几何体的表面积为22cm2.
故答案为:22.
【点睛】
此题考查了几何体的表面积计算,解题的关键是分别判断出各个视图中小正方形的个数.
4、正方体,球体
【分析】
几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可.
【详解】
解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同.
故答案为:正方体,球体
【点睛】
本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点.
5、
【分析】
根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.
【详解】
解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,
∴圆柱体的底面直径和高为10cm,
∴侧面积为=,
故答案为:.
【点睛】
本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.
三、解答题
1、见解析
【分析】
视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.
【详解】
解:如图所示;
【点睛】
此题主要考查三视图的画法,注意实线和虚线在三视图的用法.
2、见解析
【分析】
根据简单几何体的三视图画法画出图形即可.
【详解】
解:三视图如下所示:
【点睛】
本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握画三视图的方法.
3、(1)6;(2)(3−)米
【分析】
(1)根据在同一时刻物高和影长成正比,即可求出结果;
(2)延长BE交AD延长线于F点,根据30度角的直角三角形即可求出结果.
【详解】
解:(1)∵同时刻1米长的竹竿影长为0.5米,AD=3米,
∴树AB的高度是6米;
故答案为:6;
(2)如图,延长BE,交AD于点F,
∵AB=6,∠CDF=60°,BE⊥CD,
∴∠DFE=30°,
∴AF=6,
∴DF=6−3,
∴DE=DF= (6−3)=(3−)米.
【点睛】
本题考查了解直角三角形的应用以及平行投影.解决本题的关键是作出辅助线得到AB的影长.
4、见解析
【分析】
根据已知图形得出实际摆放,进而利用从正面和左面观察得出图形即可.
【详解】
解:如图所示:
【点睛】
本题主要考查了画三视图,解题的关键件是根据已知正确得出图形的三视图.
5、(1)7;(2)见解析;(3)
【分析】
(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,即可求解;
(2)根据几何体的三视图的画法,画出图形,即可求解;
(3)根据几何体的表面积公式,即可求解.
【详解】
解:(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,
∴这个几何体由4+2+1=7个小正方体组成;
(2)该几何体的三个视图如图所示:
(3)根据题意得:这个几何体的表面积为
.
【点睛】
本题主要考查了画几何体的三视图,求几何体的表面积,熟练掌握几何体三视图的特征是解题的关键.
相关试卷
这是一份数学沪科版第25章 投影与视图综合与测试同步训练题,共19页。试卷主要包含了如图所示的几何体的主视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试课后作业题,共18页。试卷主要包含了下面图形是某几何体的三视图,如图,该几何体的左视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试复习练习题,共20页。试卷主要包含了如图所示的几何体,它的左视图是,如图所示,该几何体的俯视图是等内容,欢迎下载使用。