初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题
展开
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图几何体的主视图是,如图所示的几何体的俯视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图改变,主视图改变 D.主视图不变,左视图改变2、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是( )A. B. C. D.3、一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A.15个 B.13个 C.11个 D.5个4、如图所示的几何体,从上面看到的形状图是( )A. B.C. D.5、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )A. B.C. D.6、如图几何体的主视图是( )A. B. C. D.7、如图所示的几何体的俯视图是( )A. B. C. D.8、如图是由5个相同的小正方体搭成的几何体,它的左视图是( ).A. B. C. D.9、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )A.6 B.7 C.8 D.910、7个小正方体按如图所示的方式摆放,则这个图形的左视图是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是某几何体的三视图.已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_________.2、一个几何体由若干大小相同的小正方体搭成,如图分别是从它的正面、上面看到的形状图,若组成这个几何体的小正方体最少需要m个,最多需要n个,则m﹣n=____.3、请在右侧小方格内用阴影表示“从正面观察”得到的平面图形的示意图._________4、路灯下行人的影子属于______投影.(填“平行”或“中心”)5、如图所给出的几何体的三视图,可以确定几何体中小正方体的数目为___.三、解答题(5小题,每小题10分,共计50分)1、一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面和左面看到的这个几何体的形状图.2、作图题:如图,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.请在方格中分别画出几何体的主视图、左视图.3、如图,在水平地面上,有一盏垂直于地面的路灯AB,在路灯前方竖立有一木杆CD.已知木杆长CD=2.5米,木杆与路灯的距离BC=5米,并且在D点测得灯源A的仰角为39°,请在图中画出木杆CD在灯光下的影子(用线段表示),并求出影长.(结果保留1位小数,参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.8)4、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图.5、如图是一个由几个小正方块所搭成的几何体从上面看到的形状图,每个小正方形边长为1,小正方形中的数字表示在该位置的小正方块的个数,请在右边的方格中画出这个几何体从正面和左面看到的形状图,并求出这个几何体的表面积. -参考答案-一、单选题1、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.2、D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看下边是一个矩形,矩形的上边是一个圆,故选:D.【点睛】本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键.3、A【分析】根据主视图和左视图,分别找出每行每列立方体最多的个数,相加即可判断出答案.【详解】综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个,所以最多有(个),不可能有15个.故选:A.【点睛】本题考查三视图,根据题目给出的视图,出每行每列的立方体个数是解题的关键.4、B【分析】找出从几何体的上面看所得到的视图即可.【详解】解:从上面看到的形状图是,故选:B【点睛】此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键.5、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C.【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键.6、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解.【详解】解:从正面看,主视图是两个长方形.故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.7、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:结合所给几何体,其俯视图应为一个正方形,然后在正方形内部的左下角还有一个小长方形,故选D.【点睛】本题主要考查了简单几何体的三视图,熟知三视图的定义是解题的关键.8、B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,第一层有2个正方形,第二层左侧有1个正方形.故选:B.【点睛】本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.9、B【分析】根据几何体的三视图特点解答即可.【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,∴该几何体最少有4+2+1=7个小正方体组成,故选:B.【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键.10、C【分析】细心观察图中几何体摆放的位置,根据左视图是从左面看到的图象判定则可.【详解】解:从左边看,是左边3个正方形,右边一个正方形.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.二、填空题1、【分析】根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得【详解】主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,这个几何题为圆柱体,这个圆柱体体积为故答案为:【点睛】本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键.2、﹣4【分析】由主视图和俯视图,判断最多的正方体的个数即可解决问题.【详解】解:由主视图和俯视图可确定所需正方体个数多时的俯视图为:最多的小正方形个数时:∴n=1+2+2+2+3+3=13,最少的小正方形个数时:∴m=1+1+1+2+1+3=9,∴m-n=9-13=﹣4,故答案为:﹣4【点睛】此题主要考查了由三视图判断几何体,根据主视图和俯视图画出所需正方体个数最多和最少的俯视图是关键.3、见解析【分析】按照简单组合体三视图的画法画出相应的图形即可.【详解】解:如图:主视图有3列,从左往右每列小正方数形数目分别为3,1,2【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握视图的画法是得出正确答案的前提.4、中心【分析】根据中心投影的概念填写即可.中心投影是指把光由一点向外散射形成的投影.【详解】解:路灯发出的光线可以看成是从一点发出的光线,像这样的光线所形成的投影叫做中心投影,故路灯下人的影子是中心投影.故答案为:中心.【点睛】本题主要考查了中心投影的概念,做题的关键是熟练掌握中心投影的概念,区别中心投影和平行投影概念.5、9或10或11.【分析】从俯视图看出底层小正方体的位置,两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,分5种情况可取定小正方体的个数.【详解】解:从俯视图可以看出分简单组合体两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,∴①简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是1+2+2+3+1=9个;如图②简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是1+2+2+3+2=10个;如图∴③简单组合体可以是第一排中间列两层2个小正方体,右边列一层1个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+1+2+3+2=10个;如图∴④简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是2+2+2+3+1=10个;如图⑤简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+2+2+3+2=11个;如图所以搭成这个几何体所用的小立方块的个数为9或10或11,故答案为:9或10或11.【点睛】本题考查根据组合体的三视图确定小正方体的个数,掌握三视图的特征,结合图形分类讨论解决问题是解题关键.三、解答题1、答案见解析【分析】根据题目条件可知,该几何体从正面看有3列,各列中小正方形的数目分别为2,2和3;从左面看有2列,各列中小正方形的数目分别为3和2;据此可画出图形.【详解】解:从正面看到的该几何体的形状图如下图所示:从左面看到的该几何体的形状图如下图所示:【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字;左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中小正方形数字中的最大数字.2、见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形.【详解】解:如图所示:【点睛】本题考查简单组合体的三视图,理解视图的意义是解决问题的关键.3、DC的影长为3.1m.【分析】直接延长AD交BC的延长线于点E,可得木杆CD在灯光下的影子,进而利用锐角三角函数关系得出答案.【详解】解:在过点D的水平线上取点F,延长AD交BC于点E,光线被CD遮挡得到影子是CE,则线段EC的长即为DC的影长,∵∠ADF=39°,DF∥CE,∴∠E=∠ADF=39°,∵DC=2.5,∴在Rt△DCE中,tan39°=,解得:EC=≈3.1(m),答:DC的影长为3.1m.【点睛】本题考查解直角三角形,掌握解直角三角形的方法,选择恰当锐角三角函数是解题关键.4、(1)见解析;(2)见解析【分析】(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.5、图见解析,28【分析】从正面看有三列,看到的正方形的个数分别为1,3,1,从左边看有两列,看到的正方形的个数分别为2,3,从而可画出主视图与左视图,再根据三种视图看到的正方形的数量乘以2,从而可计算表面积.【详解】解:从正面和左面看到的形状图如下图 表面积【点睛】本题考查的是根据俯视图还原几何体,同时考查画正视图与左视图,几何体的表面积,掌握三种视图的含义是解题的关键.
相关试卷
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步达标检测题,共18页。试卷主要包含了如图所示的几何体,它的左视图是,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
这是一份2021学年第25章 投影与视图综合与测试达标测试,共20页。
这是一份沪科版九年级下册第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图所示的几何体的左视图为,下列立体图形的主视图是,如图所示的几何体的俯视图是,图1等内容,欢迎下载使用。