数学九年级下册第25章 投影与视图综合与测试课后复习题
展开沪科版九年级数学下册第25章投影与视图专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是由5个相同的小正方体搭成的几何体,它的左视图是( ).
A. B. C. D.
2、如图所示的几何体的俯视图是( )
A. B.C. D.
3、如图,几何体的左视图是( )
A. B. C. D.
4、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是( )
A.左视图和俯视图不变 B.主视图和左视图不变
C.主视图和俯视图不变 D.都不变
5、根据三视图,求出这个几何体的侧面积( )
A. B. C. D.
6、如图所示几何体的左视图是( )
A. B.
C. D.
7、如图,由5个完全一样的小正方体组成的几何体的左视图是( )
A. B.
C. D.
8、下列几何体中,俯视图为三角形的是( )
A. B. C. D.
9、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为( )
A. B.
C. D.
10、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2m﹣n=( )
A.10 B.11 C.12 D.13
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有____个.
2、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.
3、一个几何体由一些大小相同的小正方体组成,如图写出是它的主视图和左视图,那么组成该几何体所需小正方体的个数最多为____
4、如图是某几何体的三视图.已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_________.
5、下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、画出下列几何体的主视图、左视图与俯视图.
2、(1)添线补全下列几何体的三种视图.
(2)如图,在地面上竖直安装着AB、CD、EF 三根立柱,在同一时刻同一光源下立柱AB、CD 形成的影子为BG与DH.
①填空:判断此光源下形成的投影是: 投影;
②作出立柱EF在此光源下所形成的影子.
3、如图,在水平地面上,有一盏垂直于地面的路灯AB,在路灯前方竖立有一木杆CD.已知木杆长CD=2.5米,木杆与路灯的距离BC=5米,并且在D点测得灯源A的仰角为39°,请在图中画出木杆CD在灯光下的影子(用线段表示),并求出影长.(结果保留1位小数,参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.8)
4、如图,路灯灯泡在线段上,在路灯下,王华的身高用线段表示,她在地上的影子用线段表示,小亮的身高用线段表示.
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子;
(2)如果王华的身高米,她的影长米,且她到路灯的距离米,求路灯的高度.
5、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.
(1)请画出这个几何体的三视图;
(2)该几何体的表面积(含下底面)为 ;
(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加 个小正方体.
-参考答案-
一、单选题
1、B
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.
【详解】
从左面看,第一层有2个正方形,第二层左侧有1个正方形.
故选:B.
【点睛】
本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.
2、C
【分析】
根据几何体的俯视图即为从几何体的上面看到的形状,判断即可.
【详解】
解:从上面看该几何体,所看到的图形如下:
故选:C.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提.
3、D
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
根据左视图的定义可知,这个几何体的左视图是选项D,
故选:D.
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义.
4、A
【分析】
根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.
【详解】
解:若去掉1号小正方体, 主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,
从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,
从左边看过去,看到的小正方形的个数与排列方式不变; 所以左视图不变,
所以A符合题意,B,C,D不符合题意;
故选:A.
【点睛】
本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.
5、D
【分析】
首先根据题意得出这个几何体是圆柱,然后根据三视图得出圆柱的高和底面半径,最后根据圆柱的侧面积公式求解即可.
【详解】
解:由题意知,几何体是底面直径为10、高为20 的圆柱,
所以其侧面积为.
故选:D.
【点睛】
此题考查了几何体的三视图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式.
6、D
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.
【详解】
解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,
故选:D
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.
7、B
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题的关键是从左边看得到的图形是左视图.
8、D
【分析】
从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.
【详解】
从上方朝下看只有D选项为三角形.
故选:D.
【点睛】
本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.
9、C
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示.
【详解】
解:从左面看去,是两个有公共边的矩形,如图所示:
故选:C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.
10、B
【分析】
根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体.
【详解】
解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,
∴m=4+3+2=9,n=4+2+1=7,
∴2m﹣n=2×9﹣7=11.
故选B.
【点睛】
本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数.
二、填空题
1、12
【分析】
从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出碟子的层数和个数,从而算出总的个数.
【详解】
解:由三视图可得三摞碟子数从左往右分别为5,4,3,
则这个桌子上共有5+4+3=12个碟子.
故答案为:12.
【点睛】
本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数.
2、6 10
【分析】
根据题中所给的正面的形状和左面的形状即可得.
【详解】
解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;
故答案为:6,10.
【点睛】
本题考查了三视图,解题的关键是根据三视图得出立体图形.
3、8
【分析】
根据三视图还原简单几何体,由主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,即可计算出小正方体的最少块数.
【详解】
解:由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;
由左视图可知左侧两,右侧一层,所以图中的小正方体最多5+3=8块.
故答案为8
【点睛】
本题主要考查了三视图,明确三视图的定义以及由三视图还原几何体的法则是解题关键.
4、
【分析】
根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得
【详解】
主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,
这个几何题为圆柱体,
这个圆柱体体积为
故答案为:
【点睛】
本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键.
5、③④①②
【分析】
根据从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.
【详解】
解:西为③,西北为④,东北为①,东为②,
将它们按时间先后顺序排列为③④①②,
故答案是:③④①②.
【点睛】
本题考查平行投影的特点和规律,解题的关键是掌握在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.
三、解答题
1、见解析
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
如图所示:主视图
左视图
俯视图
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
2、(1)画图见详解;(2)①中心;②见详解.
【分析】
(1)根据三视图的画图原理,看见的线是实线,看不见的线是虚线,左视图中补画燕尾槽底部线用虚线,俯视图中燕尾槽开口部分两条线用实线补画,燕尾槽底部两条线用虚线补画即可;
(2)①连结AG,并反向延长,两CH并反向延长两射线交于点O,则点O就是光源,根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;
②连接OE,并延长与地面相交,交点为I,如图FI为立柱EF在光源O下的投影即可.
【详解】
解:(1)根据三视图的画图原理,左视图中补画燕尾槽底部线用虚线,俯视图中燕尾槽开口部分两条线用实线补画,燕尾槽底部两条线用虚线补画;
(2)①连结AG,并反向延长,两CH并反向延长两射线交于点O,则点O就是光源,由中心投影的定义得:此光线下形成的投影是:中心投影
故答案为:中心;
②如图,连接OE,并延长与地面相交,交点为I,则FI为立柱EF在光源O下所形成的影子.
【点睛】
本题考查了补画三视图实线与虚线,中心投影的定义,根据已知立柱的影子确认光源的位置,在光源下画立柱影子,掌握补画三视图实线与虚线区别,中心投影的定义,两立柱与影子确认光源的位置,在光源下画立柱影子是解题关键.
3、DC的影长为3.1m.
【分析】
直接延长AD交BC的延长线于点E,可得木杆CD在灯光下的影子,进而利用锐角三角函数关系得出答案.
【详解】
解:在过点D的水平线上取点F,
延长AD交BC于点E,光线被CD遮挡得到影子是CE,
则线段EC的长即为DC的影长,
∵∠ADF=39°,DF∥CE,
∴∠E=∠ADF=39°,
∵DC=2.5,
∴在Rt△DCE中,
tan39°=,
解得:EC=≈3.1(m),
答:DC的影长为3.1m.
【点睛】
本题考查解直角三角形,掌握解直角三角形的方法,选择恰当锐角三角函数是解题关键.
4、(1)见解析;(2)路灯高为米
【分析】
(1)根据投影的特点即可作图;
(2)根据图形的特点得到△BAC∽△GDC,故可列出 比例式求解.
【详解】
(1)如图,为灯泡位置,为小亮影子
(2)∵
∴△BAC∽△GDC
∴
即
∴GD=4.4米,
∴路灯高为米.
【点睛】
此题主要考查投影与相似的实际应用,解题的关键是熟知相似三角形的判定与性质.
5、(1)见解析;(2)28;(3)2
【分析】
(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;
(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;
(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.
【详解】
(1)如图所示:
(2)(4×2+6×2+4×2)×(1×1)
=(8+12+8)×1
=28
故答案为:28
(3)由分析可知,最多可以再添加2个小正方体,如图,
故答案为:2
【点睛】
此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
沪科版第25章 投影与视图综合与测试课后练习题: 这是一份沪科版第25章 投影与视图综合与测试课后练习题,共18页。试卷主要包含了下列物体的左视图是圆的为,如图所示的几何体的主视图为,如图所示的几何体的俯视图是等内容,欢迎下载使用。
初中沪科版第25章 投影与视图综合与测试习题: 这是一份初中沪科版第25章 投影与视图综合与测试习题,共19页。试卷主要包含了下列物体中,三视图都是圆的是等内容,欢迎下载使用。
沪科版九年级下册第25章 投影与视图综合与测试随堂练习题: 这是一份沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共19页。试卷主要包含了下列物体的左视图是圆的为,下列物体中,三视图都是圆的是等内容,欢迎下载使用。