沪科版九年级下册第25章 投影与视图综合与测试测试题
展开沪科版九年级数学下册第25章投影与视图同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
2、下列哪种光线形成的投影是平行投影( )
A.太阳 B.探照灯 C.手电筒 D.路灯
3、下列物体的左视图是圆的为( )
A.足球 B. 水杯
C. 圣诞帽 D. 鱼缸
4、已知一个几何体如图所示,则该几何体的左视图是( )
A. B. C. D.
5、如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是( )
A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
6、如图所示的几何体的俯视图是( )
A. B. C. D.
7、如图几何体的主视图是( )
A. B. C. D.
8、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.
A.2 B.4 C.6 D.8
9、如图是一根空心方管,它的主视图是( )
A. B. C. D.
10、下列立体图形的主视图是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)
2、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留).
从正面看 从左面看 从上面看
3、如图所示是一个几何体的三视图,这个几何体的名称是___________
4、如图,一个正方体由64块大小相同的小正方体搭成,现从中取走若干个小立方体块,得到一个新的几何体,新几何体与原几何体的三视图(从正面、从左面、从上面看到的所搭几何体的形状图)相同,最多取走___块小立方体块.
5、用小立方体搭一个几何体,分别从它的正面、上面看到的形状如图所示,这样的几何体最少需要 _____个小立方体;最多需要 _____个小立方体.
三、解答题(5小题,每小题10分,共计50分)
1、作图题:如图,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.请在方格中分别画出几何体的主视图、左视图.
2、由5个相同的小正方体搭成的物体的俯视图如图所示,这个物体有几种搭法?
3、如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一棵小树,它的影子是MN.
(1)画出路灯的位置(用点P表示);
(2)在图中画出表示小树的线段.
4、如图是由大小相同的小正方体组合成的简单几何体.
(1)在下面的网格中画出该几何体从正面看和从左面看的形状图.
(2)每个正方体棱长为1cm,那么搭成这个几何体的表面积是 cm2.
5、请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.
-参考答案-
一、单选题
1、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
2、A
【分析】
中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.
【详解】
解:太阳光线形成的投影是平行投影,
探照灯,手电筒,路灯形成的投影是中心投影,
故选A
【点睛】
本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.
3、A
【分析】
根据左视图是指从物体左面向右面正投影得到的投影图,即可求解.
【详解】
解:A、左视图为圆,故本选项符合题意;
B、左视图为长方形,故本选项不符合题意;
C、左视图为三角形,故本选项不符合题意;
D、左视图为长方形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
4、B
【分析】
根据几何体左视图的概念求解即可.
【详解】
解:由左视图的概念可得,这个几何体的左视图为:
.
故选:B.
【点睛】
此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视图的概念.左视图,一般指由物体左边向右做正投影得到的视图.
5、A
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】
解:由主视图和左视图为长方形判断出是柱体,由俯视图是三角形可判断出这个几何体应该是三棱柱.
故选:A.
【点睛】
本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为三角形就是三棱柱.
6、D
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:结合所给几何体,其俯视图应为一个正方形,然后在正方形内部的左下角还有一个小长方形,
故选D.
【点睛】
本题主要考查了简单几何体的三视图,熟知三视图的定义是解题的关键.
7、A
【分析】
根据题意可得:从正面看,主视图是两个长方形,即可求解.
【详解】
解:从正面看,主视图是两个长方形.
故选:A
【点睛】
本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.
8、B
【分析】
根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.
【详解】
解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;
∵∠E+∠F=90°,∠E+∠ECD=90°,
∴∠ECD=∠F,
∴△EDC∽△FDC,
∴,即DC2=ED•FD=2×8=16,
解得CD=4m.
故选:B.
【点睛】
本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.
9、A
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看,是内外两个正方形,
故选A.
【点睛】
本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.
10、A
【分析】
主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.
【详解】
解:主视图是从正面所看到的图形,是:
故选:A
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
二、填空题
1、中心投影
【分析】
根据平行投影和中心投影的定义解答即可.
【详解】
解:“皮影戏”中的皮影是中心投影.
故答案是中心投影.
【点睛】
本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影.
2、
【分析】
根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.
【详解】
解:由图可知,圆柱体的底面直径为2,高为3,
所以,侧面积.
故答案为:.
【点睛】
本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.
3、圆柱体
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
解:由于主视图和左视图为长方形可得此几何体为柱体,
由俯视图为圆可得此几何体为圆柱体.
故答案为:圆柱体.
【点睛】
本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了空间想象能力.
4、8
【分析】
由题意得,只需保留原几何的最外层和底层,最中间有8块,即可得.
【详解】
解: ∵新几何体与原几何体的三视图相同,
∴只需保留原几何的最外层和底层,
∴最中间有(块),
故答案为:8.
【点睛】
本题考查了正方体的三视图,解题的关键是掌握正方体的三视图.
5、10 14
【分析】
从上面看中可以看出最底层小正方体的个数及形状,从前面看可以看出每一层小正方体的层数和个数,从而算出总的个数.
【详解】
解:∵从上面看有7个正方形,
∴最底层有7个正方体,
从前面看可得第2层最少有2个正方体;最多有5个正方体,
第3层最少有1个正方体;最多有2个正方体,
∴该组合几何体最少有7+2+1=10个正方体,最多有7+5+2=14个正方体.
故答案为:10,14.
【点睛】
此题主要考查了不同方向看几何体,关键是掌握口诀“上面看打地基,前面看疯狂盖,左面看拆违章”就很容易得到答案.
三、解答题
1、见解析
【分析】
由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形.
【详解】
解:如图所示:
【点睛】
本题考查简单组合体的三视图,理解视图的意义是解决问题的关键.
2、3种,见解析
【分析】
根据俯视图分析底层有三个小正方形,上层一个,还有一个小正方体有3种放置即可.
【详解】
解:∵从小正方体搭成的物体的俯视图如图所示,是从物体的上方向下看得到的图形,
∴从俯视图看,反映出两层,底层有3个小正方体,从前往后排,第一排两个,第二排一个,左对齐,上层有一个小正方体,在第一排中间偏右,
∵有5个小正方体,还有一个小正方体与其他底层三个小正方形重叠或与二层重叠,
底层从左边数第一排第一列不能重叠放置,上层小正方体不能固定,为此底层重叠放置有两种如图1,图2,与上层小正方体重叠一种图3,一共有3种搭法,
它们的立体图分别如图.
【点睛】
本题考查由俯视图画立体图形,利用俯视图确定底层有3个小正方体,上层有一个小正方体,另一正方体有3个位置放法是解题关键.
3、(1)见解析;(2)见解析.
【分析】
(1)连接CA并延长与FD的延长线交于点P,点P即路灯的位置;
(2)连接PN,作MG垂直于MN与PN交于点G,线段GM即为表示小树的线段.
【详解】
解:(1)如图,连接CA并延长与FD的延长线交于点P,点是路灯的位置.
(2)如图,连接PN,作MG垂直于MN与PN交于点G,线段表示小树.
【点睛】
此题考查了中心投影,解题的关键是熟练掌握中心投影的性质.
4、(1)图见解析;(2)38.
【分析】
(1)由已知条件可知,从正面看的视图有3列,每列小正方数形数目分别为3,1,2,据此可画出图形;从左面看的视图有3列,每列小正方形数目分别为3,2,1;
(2)根据三视图的面积和被挡住的面积即可计算总面积;
【详解】
解:(1)如图所示:
(2)搭成这个几何体的表面积是:6×2+6×2+6×2+2=38 cm2.
【点睛】
本题考查从不同方向看几何体,几何体的表面积等知识.解题的关键是熟练掌握基本知识,属于中考常考题型.
5、作图见解析
【分析】
主视图:从正面看到的平面图形,左视图:从左边看到的平面图形,俯视图:从上面看到的平面图形,根据三种视图的定义,再根据看到的平面图形作图即可.
【详解】
解:从正面可以看到5个正方形,分3列,依次为3个,1个,1个,
所以从正面看的主视图为:
从左面可以看到4个正方形,分2列,依次为3个,1个,
所以从左面看的左视图为:
从上面可以看到4个正方形,分3列,依次为1个,2个,1个,
所以从上面看的俯视图为:
【点睛】
本题考查的是作简单组合体的三视图,掌握“主视图,左视图,俯视图的含义”是解题的关键.
数学沪科版第25章 投影与视图综合与测试当堂检测题: 这是一份数学沪科版第25章 投影与视图综合与测试当堂检测题,共19页。试卷主要包含了如图所示的几何体的俯视图是,如图,身高1.5米的小明.,下面图形是某几何体的三视图,下列立体图形的主视图是等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试课时练习: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课时练习,共18页。
沪科版九年级下册第25章 投影与视图综合与测试一课一练: 这是一份沪科版九年级下册第25章 投影与视图综合与测试一课一练,共19页。试卷主要包含了如图所示的几何体的俯视图是,下列物体的左视图是圆的为等内容,欢迎下载使用。