初中沪科版第25章 投影与视图综合与测试当堂达标检测题
展开
这是一份初中沪科版第25章 投影与视图综合与测试当堂达标检测题,共19页。试卷主要包含了下列物体中,三视图都是圆的是,如图,该几何体的左视图是,如图所示的几何体,其左视图是.,如图所示的几何体的主视图是,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、棱长为a的小正方体按照如图所示的规律摆放,从上面看第100个图,得到的平面图形的面积为( )A.100a B. C. D.2、根据三视图,求出这个几何体的侧面积( )A. B. C. D.3、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )A. B. C. D.4、下列物体中,三视图都是圆的是( )A. B. C. D.5、如图,该几何体的左视图是( )A. B. C. D.6、如图所示的几何体,其左视图是( ).A. B. C. D.7、如图所示的几何体的主视图是( )A. B. C. D.8、如图是下列哪个立体图形的主视图( )A. B.C. D.9、下列四个几何体中,主视图与俯视图不同的几何体是( )A. B.C. D.10、如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A.12 B.11 C.10 D.9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号. —————— —————— —————— ——————2、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为_____cm2.3、由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图所示,则搭成该几何体的小正方体的个数最少是____4、如图所示是给出的几何体三个方向看到的形状,则这个几何体最多由_____个小正方体组成.5、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值___.三、解答题(5小题,每小题10分,共计50分)1、如图是由一些棱长都为1cm的小正方体组合成的简单几何体.画出该几何体的主视图、左视图和俯视图,并用阴影表上:2、一个几何体由大小相同的小立方块搭成,箭头所指的为正面,请画出从正面、左面、上面看到的几何体的形状图.3、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图.4、如图是一个由几个小正方块所搭成的几何体从上面看到的形状图,每个小正方形边长为1,小正方形中的数字表示在该位置的小正方块的个数,请在右边的方格中画出这个几何体从正面和左面看到的形状图,并求出这个几何体的表面积.5、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图. -参考答案-一、单选题1、B【分析】先探究第100个图形俯视图所看到的小正方形的个数,再结合每个小正方形的面积为 从而可得答案.【详解】解:(1)∵第1个图有1层,共1个小正方体, 第2个图有2层,第2层正方体的个数为1+2=3, 第3个图有3层,第3层正方体的个数为1+2+3=6, 第n层时,正方体的个数为1+2+3+…+n=n(n+1), 当n=100时,第100层的正方体的个数为×100×101=5050,从上面看第100个图,看到了5050个小正方形,所以面积为: 故选B【点睛】本题考查的是三视图,俯视图的面积,掌握“正方体堆砌图形的俯视图”是解本题的关键.2、D【分析】首先根据题意得出这个几何体是圆柱,然后根据三视图得出圆柱的高和底面半径,最后根据圆柱的侧面积公式求解即可.【详解】解:由题意知,几何体是底面直径为10、高为20 的圆柱,所以其侧面积为.故选:D.【点睛】此题考查了几何体的三视图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式.3、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论.【详解】解:根据左视图的定义,该几何体的左视图是:故选:C .【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键.4、C【分析】根据主视图、左视图、俯视图的判断方法,逐项进行判断即可.【详解】A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;B. 圆锥的主视图是三角形,左视图是三角形,俯视图是圆,不符合题意;C.球的三视图都是圆,符合题意;D.正方体的三视图都是正方形,不符合题意.故选:C.【点睛】题目主要考查了简单几何体的三视图,理解三视图的作法是解题的关键.5、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.6、B【分析】根据左视图的定义(一般指由物体左边向右做正投影得到的视图)求解即可.【详解】解:由左视图的定义可得:左视图为一个正方形,由于正方体内部有一个圆柱体,根据其方向可得左视图为:,故选:B.【点睛】题目主要考查三视图的作法,理解三视图的定义是解题关键.7、B【分析】根据主视图即从物体的正面观察进而得出答案.【详解】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:【点睛】本题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.8、B【分析】根据主视图即从物体正面观察所得的视图求解即可.【详解】解:的主视图为,故选:B.【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9、C【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意.故选:C.【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.10、D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;∴这个几何体最少需要用个小正方体.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.二、填空题1、③①④②【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可.【详解】根据三视图的定义可知:第一个三视图所对应的几何体为③;第二个三视图所对应的几何体为①;第三个三视图对应的几何体为④;第四个三视图对应的几何体为②;故答案为:③①④②.【点睛】本题考查三视图,熟知三视图的定义是解题的关键.2、【分析】有顺序的计算上下面,左右面,前后面的表面积之和即可.【详解】解:4×2+3×2+4×2=22(cm2).所以该几何体的表面积为22cm2.故答案为:22.【点睛】此题考查了几何体的表面积计算,解题的关键是分别判断出各个视图中小正方形的个数.3、4【分析】由主视图可知几何体有两列,两层;由左视图可知几何体有两排,两层,所以第一列最少1个正方体,第二列有最少有3个正方体,由此可解.【详解】解:由主视图,左视图画出几何体,如图:4、10【分析】从俯视图可知第一层有5个小正方体,从正视图和左视图可知第二层最多有5个,据此即可求得答案【详解】由俯视图可知第一层有5个小正方体,由已知的正视图和左视图可知,第2层最多有5个小正方体,故该几何体最多有5+5=10个故答案为:10【点睛】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.5、【分析】观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值.【详解】解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,则底面边长为a,依题意有a×2×3=12,解得a=.故答案为:.【点睛】此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长.三、解答题1、图见解析.【分析】根据主视图、左视图和俯视图的定义即可得.【详解】解:该几何体的主视图、俯视图和左视图如下所示:【点睛】本题考查了几何体的主视图、左视图和俯视图,掌握理解各定义是解题关键.2、见解析【分析】从正面看:共有3列,从左往右分别有3,1,1个小正方形;从左面看:共有3列,从左往右分别有1,3,1个小正方形;从上面看:共分3列,从左往右分别有3,1,2个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】本题考查的是画简单组合体的三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形,理解三视图的含义是作图的关键.3、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【详解】(1)画图如下:(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【点睛】本题考查了几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字.4、图见解析,28【分析】从正面看有三列,看到的正方形的个数分别为1,3,1,从左边看有两列,看到的正方形的个数分别为2,3,从而可画出主视图与左视图,再根据三种视图看到的正方形的数量乘以2,从而可计算表面积.【详解】解:从正面和左面看到的形状图如下图 表面积【点睛】本题考查的是根据俯视图还原几何体,同时考查画正视图与左视图,几何体的表面积,掌握三种视图的含义是解题的关键.5、(1)见解析;(2)见解析【分析】(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题,共22页。试卷主要包含了如图所示的几何体,其左视图是.,如图所示的几何体的俯视图是,图1,分别从正面,下列物体中,三视图都是圆的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图,几何体的左视图是,如图所示的几何体的俯视图是,图1等内容,欢迎下载使用。
这是一份初中沪科版第25章 投影与视图综合与测试课时练习,共18页。试卷主要包含了如图所示的礼品盒的主视图是等内容,欢迎下载使用。